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Abstract: Dependency parsing is considered a key technology for improving information extraction tasks. Research
indicates that dependency parsers spend more than 95% of their total runtime on feature computations. Based
on this insight, this paper investigates the potential of improving parsing throughput by designing feature
representations which are optimized for combining single features to more complex feature templates and
by optimizing parser constraints. Applying these techniques to MDParser increased its throughput four fold,
yielding Syntactic Parser, a dependency parser that outperforms comparable approaches by factor 25 to 400.

1 INTRODUCTION

Dependency parsing is considered a key technol-
ogy for improving natural language processing. Al-
though information extraction tasks such as named
entity linking, named entity recognition, opinion min-
ing and coreference resolution would benefit from de-
pendency parsing, throughput has been one of the
mayor obstacles towards its deployment for big data
and Web intelligence applications.

Therefore, researchers have put more attention to
parsing throughput in recent years which led to sig-
nificant speed improvements. The latest version of
the Stanford parser (Chen and Manning, 2014), for
instance, is able to process on average more than 900
sentences per second, a number which is even ex-
ceeded by MDParser (Volokh, 2013) with a through-
put of approximately 5200 sentences per second.

In contrast to related work which primarily fo-
cuses on the parsing and feature selection strategy,
this paper puts its emphasis on feature extraction and
the optimization of parsing constraints. The sug-
gested methods, therefore, complement related work,
i.e. they can easily be applied on top of them.

A major motivator for applying dependency pars-
ing is its potential to enable a more sophisticated text
processing for information extraction tasks such as
opinion mining. Qiu et al., for example, define syn-
tactic rules that draw upon dependency trees to extract
opinion targets from text documents. Afterwards,
their approach propagates the value from opinion-
bearing words to their targets based on a set of pre-
defined dependency rules, connecting the targets with

further terms within the sentence (Qiu et al., 2011).
Targets can transfer their sentiment to other terms
which can either be new sentiment terms or targets.
While Qiu et al. focused on identifying unknown
sentiment terms, Gindl et al. apply this approach to
the extraction of sentiment aspects and targets (Gindl
et al., 2013). Poria et al. use dependency parsing
for decomposing text into concepts based on the de-
pendency relations between clauses. Their approach
is domain-independent and extracts concepts with an
accuracy of 92%, obtains a precision of 85% for sen-
timent analysis, and a precision of 63% for emo-
tion recognition (anger, sadness, disgust, fear, sur-
prise and joy), therefore, outperforming approaches
which solely relied on N-grams or part-of-speech tag-
ging (Poria et al., 2014).

These improvements and the potential to facili-
tate more advance text understanding for information
extraction and text mining tasks in big data environ-
ments have been major drivers for developing and
evaluating the methods discussed in this paper.

The rest of this paper is organized as follows: Sec-
tion 2 presents an overview of related work. Section 3
then provides an analysis of the dependency parsing
process, addresses areas for improving the parser’s
throughput, and performs isolated evaluations of how
these improvements impact the parsing speed. We
then present a detailed benchmark and evaluation of
our approach in Section 4 as well as a discussion of
the obtained results. The paper closes with an outlook
and conclusion in Section 5.



2 RELATED WORK

Most current dependency parsers are either graph-
based or transition-based (Nivre and McDonald,
2008). Graph-based dependency parsers learn a
model for scoring dependency graphs from training
sentences and choose the highest scoring dependency
graph for unknown sentences. This strategy requires
the parser to create and score a large number of de-
pendency graphs which is a time consuming task.
Transition-based parsers, in contrast, only optimize
the transitions between parser states, i.e. the decision
on whether to create a dependency with the label l
between two nodes ni and n j. They derive the de-
pendency graph by performing such transitions for all
words in the sentence using a parsing strategy which
determines the set of possible transitions. Popular
parsing strategies are based on the transition system
by Nivre for projective and non-projective parsing
(Nivre, 2009), or on the Covington algorithm (Cov-
ington, 2001). Parsers which are based on Nivre’s
transition system have a parsing complexity of O(n)
for projective, and O(n2) for non-projective parsing
(Nivre, 2008). Since the fraction of non-projective
dependencies is usually very low even non-projective
dependency parsers that use Nivre’s transition system
have a close to linear time complexity (Nivre, 2009).
The Covington algorithm, in contrast, has a time com-
plexity of O(n2) in the worst case (Volokh and Neu-
mann, 2012).

Clearparser, which is now part of the ClearNLP
project (https://github.com/clearnlp), extends Nivre’s
algorithm (Nivre and McDonald, 2008) with a tran-
sition which determines whether the parser continues
with projective or non-projective parsing, cutting the
average parsing speed by 20% compared to the origi-
nal implementation (Choi and Palmer, 2011).

Although the importance of the parsing strat-
egy for parser throughput is well researched and
undisputed, feature extraction seems to play an even
more important role in optimizing dependency pars-
ing since it has not received much attention yet. Re-
cent research by He et al. suggests that many state of
the art dependency parsers spend most of their time in
the feature extraction step (He et al., 2013). Chen and
Manning observed that more than 95% of the parser’s
runtime is consumed by feature extraction, a number
which is even surpassed by the baseline parser used
by Bohnet (Chen and Manning, 2014; Bohnet, 2010).
The baseline evaluated in his paper uses the archi-
tecture of McDonald and Pereira and spends 99% of
its total runtime on feature extraction (McDonald and
Pereira, 2006).

He et al. address this problem by improving fea-

ture selection. Their parsing framework dynamically
selects features for each edge, achieving average ac-
curacies comparable to parsers which use the full fea-
ture set with less then 30% of the feature templates
(He et al., 2013).

Chen and Manning, in contrast, use dense features
which embed high dimensional sparse indicator fea-
tures into a low-dimensional model (Chen and Man-
ning, 2014). This approach does not only reduce fea-
ture extraction cost but also addresses common prob-
lems of traditional feature templates such as sparsity,
and incompleteness (i.e. the selected feature tem-
plates do not cover every useful feature combination)
(Chen and Manning, 2014).

3 METHOD

3.1 Feature Design

Syntactic Parser mitigates the problem of feature
sparseness by performing a frequency analysis of lex-
ical word forms, replacing words with a very low fre-
quency with the label unknown. Optimizing the fea-
ture design by replacing infrequent word forms with
the unknown label did not only improve the parser’s
throughput and memory consumption but also posi-
tively affected the parsing accuracy since it enabled
the classifier to learn strategies for handling infre-
quent features.

We also systematically scanned for feature tem-
plates which do not significantly improve parsing per-
formance and identified four combined features used
by MDParser as candidates for removal from the pars-
ing process.

3.2 Feature Representation

Parsers tend to spend a significant amount of time in
the feature extraction and generation process. MD-
Parser generates new features by combining elemen-
tary string features such as part-of-speech tags, word
forms and dependencies with feature identifiers that
indicate the feature type (e.g. pi, pip1, pj, etc.).
Depending on the feature type between two (single
feature) and four (ternary feature) string concatena-
tions are required to generate the corresponding fea-
ture. Volokh and Neumann (Volokh and Neumann,
2012) analyzed this problem and came to the con-
clusion that computing these combination requires a
significant amount of the total parsing runtime. They
also considered transforming string features into bi-
nary ones but suspected that the transformation might



be too time intensive to provide an overall benefit
(Volokh and Neumann, 2012).

Based on this analysis, an efficient feature repre-
sentation would not only need to be more efficient for
combining features but is also required to minimize
the number of transformations.

MDParser transforms String features to integer
values since the used liblinear classifier operates
on numerical values. This step requires a total of
27 transformations for every word, since MDParser
computes 27 different features templates. Syntac-
tic Parser, in contrast, transforms elementary features
to integer values before the features are combined,
requiring only three transformations (part-of-speech,
word form and dependency) for every word in a sen-
tence.

Syntactic Parser represents its numerical features
n as 64-bit integers (Java long type) which consist
of (i) an 8 bit value indicating the feature type, and
(ii) one or more of the following elementary features:
word forms (20 bit), part-of-speech tag (16 bit) or de-
pendency label (16 bit). The feature type is always
stored in the last eight bits, while the position of ele-
mentary features depends on the feature type.

We, therefore, replace the mapping M : F →N of
parser feature strings fi ∈ F to integer values n ∈ N
with three mappings that translate word forms wi ∈
W (Mword f orm : W → {0, ...,1048575}), part-of-
speech tags posi ∈ P (Mpos : P →{0, ...,65535}) and
dependency labels di ∈D (Mdep : D→{0, ...65535})
to integer values. The numerical feature value n is
then derived by performing bit operations on these el-
ementary features.

Figure 1 illustrate the binary encoding for the fea-
tures w fi, m3, and m6. Combining and encoding fea-
tures is very fast, since it only involves bit operations
on 64 bit values which can be performed directly in
the CPU’s registers. We use hash maps which have
a time complexity of O(1) to translate between the
string features extracted from the input text and their
internal numerical representation. Another potential
optimization is replacing these maps with hash val-
ues obtained by calls to String’s hashCode() method
or to high throughput non-cryptographic hash func-
tions such as Murmur3 1. Our experiments showed
that Java’s hash maps are very effective and no sig-
nificant speed improvement could be obtained by re-
placing hash maps with the hash functions mentioned
above.

1https://code.google.com/p/smhasher/

Figure 1: Binary feature encoding for single (w fi), binary
(m3) and ternary features (m6).

3.3 Constraint Checking

The dependency parser needs to ensure that the cre-
ated dependency tree does not contain single heads,
reflexive nodes, improper roots, or cycles. MD-
Parser and Syntactic Parser perform projective pars-
ing and, therefore, also eliminate non-projective de-
pendencies. The parser tests for every combination
of two nodes, whether one of the above conditions is
met, before it even considers a dependency between
these nodes. This strategy has considerable speed and
accuracy benefits, since these tests are less expensive
than querying the machine learning component for the
existence of a dependency.

Considering that (i) the test for cycles and projec-
tiveness traverse the dependency tree2 and are, there-
fore, much more expensive than tests for single heads,
reflexive nodes and improper roots, and that (ii) tests
are called n·(n−1)

2 times for a sentence with n words,
optimizing the order of these tests has the potential
to considerably improve the performance of the de-
pendency parsing algorithm. This is also reflected
in the performance improvement obtained by chang-
ing the original test sequence (single heads, reflex-
ive nodes, cycles, improper roots, projectiveness) to
an optimized one (single heads, reflexive nodes, im-
proper roots, cycles, projectiveness). We also con-
sider that projectiveness is a symmetric property and,
therefore, compute it only once rather than twice (for
the potential dependency ni → n j and for the depen-
dency n j→ ni).

The results summarized in Table 1 show a perfor-
mance boost of factor three for numerical features and
factor four for combining numerical features with op-
timized constraint checking over the original imple-
mentation. The computations required for optimizing

2Nivre introduces an algorithm that does not require
traversing the dependency tree but rather performs these
checks in almost linear time (proportional to the inverse of
the Ackermann function) by using suitable data structures
to keep track of the connected components of each node
(Nivre, 2008).



the feature representation have been performed on an
Intel Core i3-2310M CPU at 2.10 GHz using a single
thread and the OpenJDK virtual machine in version
1.7.0 75 on the Ubuntu 14.04 operating system. The
presented results have been computed as the average
of three runs which have been performed after parsing
of 50,000 sentences to warm up the virtual machine.
In all experiments the standard deviation of the run-
time between the experiments has been below 1.5%.

Table 1: Comparison of the feature encoding speed for
string and numerical feature representations.

feature number of processing
representation sentences time (ms)

string 1,000 16
10,000 161

100,000 1,577
1,000,000 16,827

numerical 1,000 6
10,000 55

100,000 532
1,000,000 5,414

numerical & 1,000 4
optimized 10,000 41
constraints 100,000 405
checking 1,000,000 4,077

3.4 Parser Model

Based on performance evaluations with different
model optimization strategies, we decided to adopt
the strategy deployed by MDParser. MDParser di-
vides the parser model into several smaller mod-
els. For every distinct part-of-speech tag feature (pi-
feature), a separate model is trained. All feature sets
that are generated in one transition are grouped to-
gether according to this pi-feature. Table 2 illustrates
the structure of this composite parser model. This
separation has the following advantages:
• The models are comparably small and more spe-

cific which leads to faster predictions and better
accuracy.

• Every model can be optimized according to the
pi feature. This is important since the pi-feature
considerably influences the optimal prediction for
the next parser step.
We also perform a final optimization step on the

trained model which eliminates features with a weight
of zero. This step reduces the model size and im-
proves the estimation speed, since only a few percent-
ages of the total feature set gets non-zero weights due
to the high number of sparse features.

Table 2: Composite parser model based on the part-of-
speech tag (pi-feature).

Feature pi Model

pi=VB model1
pi=NN model2
... ...

4 EVALUATION

4.1 Evaluation Setting

The experiments in this section compare Syntactic
Parser’s accuracy and throughput with four publicly
available, well known dependency parsers: (i) Malt-
Parser3, a transition based-parser which supports mul-
tiple transition systems, including arc-standard and
arc-eager (Nivre et al., 2010), (ii) MSTParser4, a two-
stage multilingual dependency parser created by Mc-
Donald et al. (McDonald et al., 2006), (iii) the latest
version of the Stanford dependency parser (Chen and
Manning, 2014), and (iv) MDParser which has been
the target of the optimizations described in this paper.

The evaluations have been performed on a sin-
gle thread of a Ubuntu 14.04 LTS server with two
16 core Intel Xeon E5-2650 CPUs at 2.0 GHz and
128 GB RAM using the 64-bit Java HotSpot in ver-
sion 1.8.0 31 and uses the universal dependency tree-
bank v2.05, a publicly available collection of tree-
banks with syntactic dependency annotations. The
evaluation framework ran all parsers in their default
configuration using the train files enclosed in the cor-
pora for training and the test files for testing accu-
racy and throughput. We did not perform any opti-
mizations such as running MaltOptimizer, optimizing
command line parameters or the feature design for
any of these parsers (including syntactic parser).

4.2 Results

Table 3 compares the parsers’ throughput and accu-
racy for the English universal dependencies corpus.
The experiments report parsing accuracy in terms of
correctly assigned head (unlabeled attachment score;
UAS) and the fraction of heads and types which have
been correctly identified (labeled attachment score;
LAS). Bold number indicate the best results for a
particular experiment. The results show that Syntac-
tic Parser provides a significantly higher throughput

3maltparser.org
4www.seas.upenn.edu/ strctlrn/MSTParser
5code.google.com/p/uni-dep-tb/



Table 3: Throughput and accuracy on the universal dependency treebank.

Throughput in UAS (LAS) per language in %
Parser sent/sec en de fr es

Syntactic 22,448 85.3 (82.3) 78.9 (73.5) 79.3 (75.4) 82.2 (78.6)
MDParser 5,240 83.9 (80.6) 78.6 (72.2) 79.5 (74.9) 82.1 (78.0)
Stanford 909 82.1 (79.6) 76.6 (71.3) 78.8 (74.5) 80.7 (76.8)
Malt (arc-eager) 628 85.0 (82.2) 78.9 (72.8) 79.1 (75.1) 82.4 (78.8)
Malt (arc-standard) 691 84.8 (82.2) 78.2 (72.4) 79.6 (75.2) 83.0 (79.3)
MST 38 84.3 (80.6) 80.7 (73.1) 79.8 (74.4) 82.8 (78.0)

than any other parser. The differences between MD-
Parser and Syntactic Parser are particularly interest-
ing since Syntactic Parser is based on MDParser and,
therefore, employs the same parsing algorithm, indi-
cating that a more than four-fold improvement has
been solely achieved by applying the optimizations
discussed in this paper. The evaluation also demon-
strates that these enhancements did not come at the
cost of accuracy, on the contrary, Syntactic Parser out-
performs MDParser in three out of four evaluations
according to the UAS measure and in all experiments
for the LAS metric.

The results presented in Table 3 indicate that Malt-
Parser, MSTParser and Syntactic Parser are very close
in terms of accuracy. Syntactic Parser provides the
best UAS for English, MaltParser outperforms its
competition for Spanish, and MST performs best for
German and French. Syntactic Parser also yields the
best LAS for English, French and German. MDParser
does particularly well for French dependencies, but
provides considerably lower scores for the other lan-
guages. These differences have been caused by the
changes to the feature set and the introduction of a
placeholder label for low frequency terms in Syntac-
tic Parser (Section 3.1).

5 OUTLOOK AND
CONCLUSIONS

Many big data information extraction approaches
still apply lightweight natural language processing
techniques since more sophisticated methods do not
yet meet their requirements in terms of throughput
and scalability. The presented research addresses this
problem by optimizing the feature representation and
constraint handling of dependency parsers yielding
significant speed improvements.

The main contributions of this work are (i) sug-
gesting a method to address common performance
bottlenecks in dependency parsers (ii) introducing

Syntactic Parser6, a dependency parser which has
been optimized based on the techniques presented in
this paper, and (iii) conducting comprehensive exper-
iments which outline the performance impact of the
proposed techniques, and compare the created parser
to other state of the art approaches.

The presented methodology yielded Syntactic
Parser, a dependency parser which provides state of
the art parsing accuracy and excels in throughput
and performance. Implementing the proposed op-
timizations increased the parsing performance more
than four-fold and also yielded a better overall ac-
curacy when compared to MDParser although both
parsers implement the same parsing strategy. Syn-
tactic Parser clearly outperforms all other parsers in
terms of throughput although it yields a comparable
UAS and LAS at the English, French, German and
Spanish universal dependency treebank.
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