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Abstract

This paper presents a method to integrate external knowledge sources such
as DBpedia and OpenCyc into an ontology learning system that automat-
ically suggests labels for unknown relations in domain ontologies based on
large corpora of unstructured text. The method extracts and aggregates
verb vectors from semantic relations identified in the corpus. It composes a
knowledge base which consists of (i) verb centroids for known relations be-
tween domain concepts, (ii) mappings between concept pairs and the types
of known relations, and (iii) ontological knowledge retrieved from external
sources. Applying semantic inference and validation to this knowledge base
yields a refined relation label suggestion. A formal evaluation compares the
accuracy and average ranking precision of this hybrid method with the per-
formance of methods that solely rely on corpus data and those that are only
based on reasoning and external data sources.
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1. Introduction

As formal conceptualizations of an application domain [1], ontologies pro-
vide the means for a common understanding of domain concepts and relations
among different stakeholder groups. When domains evolve, there is a con-
stant need to update and refine domain-specific ontologies to ensure their
usefulness. The bottleneck and cost-driver in ontology learning tends to be
the availability of expertise and qualified human resources. Automated ap-
proaches address this problem by supporting ontology engineers, improving
their productivity, and reducing the human input required.
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1.1. Related Work
Classifying previous approaches to (semi-)automatically learning ontolo-

gies [2? , 3, 4], this paper distinguishes between (i) corpus analysis, ex-
tracting information from corpus resources; (ii) corpus enrichment, inte-
grating external resources such as Wikipedia (www.wikipedia.org), Google
(www.google.com) and WordNet [5] into the extraction process; and (iii)
semantic inference and validation, incorporating data from Semantic Web
sources and investigating relations by reasoning upon this data.

Identifying and labeling non-taxonomic relations are among the ontology
learning subtasks that are considered most challenging [6]. Natural Language
Processing (NLP) competitions such as the one held in conjunction with
the International Workshop on Semantic Evaluations (Task 04 at SemEval
2007 [7], previously known as SensEval, nlp.cs.swarthmore.edu/semeval) un-
derscore the growing importance of identifying semantic relations. Building
upon the categories available in this competition (corpus analysis and enrich-
ment methods applying WordNet, Google, etc.), the following presentation
of the state of the art distinguishes between techniques that rely exclusively
on text corpora, and those that incorporate external data sources as well.

Corpus analysis applies linguistic patterns [8, 9, 10], association rules
[11], kernel-based approaches [12] and other techniques from the fields of
artificial intelligence, statistics, and mathematics to the problem of relation
discovery. For instance, methods combining syntactic, semantic and lexical
features and multiple models such as decision trees, decision rules, logistic
regression and lazy classifiers (e.g., k-nearest-neighbor) tend to perform well
in evaluations [13]. Snow et al. [14] optimize taxonomies by maximizing the
probability of a certain taxonomy given the available evidence. They use
taxonomic constraints such as the transitivity of hypernyms to determine all
relations implied by a new hypernym and apply the Bayes algorithm to verify
whether the proposed change would increase or decrease the probability of
the taxonomy given the available evidence.

Ruiz-Casado et al. [15] extend WordNet with relations learned from the
simple English version of Wikipedia (simple.wikipedia.org). They use known
relations from WordNet to identify textual patterns indicating hyponym,
hyperonym, holonym and meronym relations and automatically generalize
these patterns. Afterwards, they apply the learned patterns to extract new
relations from Wikipedia.

Zouaq and Nkambou [16] extract concept maps from textual resources
by computing the text’s keywords, analyzing the syntactic structure of key
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sentences, and a pattern-based semantic analysis. They identify important
concepts based on the concept’s number of relationships in the concept map
and apply textual patterns to discover instances, taxonomic relations and
attributes.

Navigli and Velardi [17] introduce OntoLearn, a tool which extracts do-
main terminology from Web sites. The paper’s main focus is the disambigua-
tion of the domain terminology to obtain a tree of domain concepts. The
authors identify relations by training an inductive machine learning program
with a set of manually tagged relations using the concepts participating in
the relations and all their WordNet hyponyms as features. Finally, they
apply the trained classifier to determine the labels of unlabeled relations.

Navigli and Velardi [18] describe a pattern-based method to enrich an on-
tology with definitions from a glossary. They apply manually defined regular
expressions which consider (i) lexical similarity, (ii) part-of-speech tags, and
(iii) syntactic and semantic constraints to capture relevant gloss fragments.

Many relation learning approaches are limited to in-corpus analysis as
well. Snow et al. [19] apply a bootstrapping approach for learning hyper-
nyms. They identify large numbers of lexico-syntactic patterns indicating hy-
pernym relations by extending a set of example relations using a supervised
learning algorithm. They improve their classifier by considering coordinate
relations between nouns with a common hypernym in the relation detection
process.

Kavalec and Svátek [6] identify verbs that express relations between con-
cepts by applying a heuristic statistical measure called above expectation.
This measure determines the most significant (concept1, verb, concept2)
triples. Since relation names are more loosely linked to lexical items than
names of concepts, the authors apply a manual step for mapping the identi-
fied verbs to domain ontology relation labels.

Ciaramita et al. [20] introduce an unsupervised, domain-independent
method for learning arbitrary relations between named entities by using the
dependency structure generated by a constituent syntactic parser [21] to ex-
tract candidate relations. The authors apply the chi-square test to select
the relations most strongly associated with ordered pairs of named entities
from the candidate list and then evaluate these relations manually. Rein-
berger et al. [22] extract subject-verb-object triples from a corpus composed
of Medline abstracts and from a legal corpus. They apply a shallow parser
to identify subject-verb-object structures and clustering to build classes of
terms sharing a certain relation.
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Rinaldi et al. [23] use deep linguistic parsing and manually created pat-
terns to extract relations from the GENIA corpus, which consists of 2000
manually annotated Medline abstracts (www-tsujii.is.s.u-tokyo.ac.jp/GENIA).
They apply (i) syntactic patterns ; (ii) semantic rules (which combine mul-
tiple syntactic patterns into rules covering syntactic variants - e.g., active,
passive, etc.; and (iii) ontological constraints to obtain domain-specific rela-
tions.

Corpus enrichment integrates external resources to increase the accuracy
of the relation labeling. Sanchez and Moreno [24] present an approach using
verbs from sentences containing domain concept identifiers and search en-
gine queries for relation labeling. Giuliano et al. [25] use WordNet synsets
and hypernym relations to refine kernel methods for extracting semantic re-
lations. Chagnoux et al. [26] use corpus enrichment methods to identify
relations using Hearst-style patterns [27]. They apply the Watson [28] se-
mantic search engine to suggest unlabeled relations, which are then used
to learn additional patterns from the domain corpus. Etzioni et al. [29]
introduce a system for Web-scale information extraction from Web pages.
They bootstrap their approach using a set of generic extraction patterns and
use statistics computed by querying search engines to assess the correctness
of the extracted relations. Yang and Callan [30] present an approach com-
bining the high accuracy of pattern-based methods with the advantages of
clustering-based techniques, which can identify implicit relations - even those
that do not occur in the text. The clustering is based on an ontology metric
which considers (i) in-corpus evidences such as co-occurrence, minipar syn-
tactic distance, and lexical-syntactic patterns, as well as (ii) unstructured
data retrieved from search engines and Google term definitions to identify
hypernyms [27, 19], siblings (using conjunctions) and meronyms [31, 9].

Many knowledge mining approaches yield flat lists of unlinked lexical se-
mantic knowledge [32] which needs to be grounded to unfold its full potential.
Pennacchiotti and Pantel [32, 33] present an approach for disambiguating
concepts participating in relations and linking them to their WordNet sense.

Semantic Inference and Validation integrates structured data from se-
mantic Web resources, a method that has become quite popular in recent
years. Using publicly available structured data from external sources to
learn domain ontologies is a natural step in the evolution of ontology learning
methods. Scarlet (scarlet.open.ac.uk) and Watson (watson.kmi.open.ac.uk)
leverage ontological knowledge from single or multiple sources to determine
the relation between concept pairs.

4



The DBpedia project (www.DBpedia.org) extracts information from Wiki-
pedia and makes this information accessible via SPARQL endpoints and Web
services. Its database currently contains 4.7 billion RDF triples with more
than 2.6 million things, 3.1 million links to external Web pages, and more
than 4.9 million links to external RDF datasets [34]. Lehmann et al. [35]
query structured data from DBpedia to identify relations between concepts
by identifying paths between these concepts. While their method has been
applied successfully, it still suffers from a number of shortcomings: (i) the
interpretation of the terms is based on DBpedia and therefore not domain-
specific, and (ii) it is not trivial to derive one relation label from the paths
determined by this method.

Despite the potential of the approaches presented above, their usefulness
is limited by the so-called knowledge acquisition bottleneck [36], a term that
refers to the difficulty of creating and maintaining extensive knowledge bases.
This problem is also reflected in the current structure of the Semantic Web,
which only comprises a relatively small number of extensive domain ontolo-
gies - as compared to a large number of easy-to-maintain, lightweight ontolo-
gies [28]. To overcome the restrictions imposed by the knowledge acquisition
bottleneck, the approach presented in this paper combines machine learning
methods with reasoning based on structured data from external sources.

1.2. Problem Statement

This paper introduces a method to suggest labels for unlabeled relations
in domain ontologies. The underlying research aimed to ensure the general
applicability of the method and addresses the shortcomings of the ontology
learning framework introduced in Liu et al. [8]. This framework extracts
domain terminology and the following relations from domain corpora: (i)
hypernym/hyponym relations, (ii) synonyms, and (iii) unlabeled relations, for
which no relation label could be determined.

The goal was to extend the relation labeling process to support the label-
ing of arbitrary relations based on a set of labels specified by domain experts.
This set of candidate labels is determined by the conceptualization of the ap-
plication domain by these experts and therefore reflects the domain’s shared
understanding.

Our approach uses an improved version of the relation labeling method
developed by Weichselbraun et al. [37] to suggest relation labels to these
unlabeled relations (Section 2.1) and integrates external structured sources
such as DBpedia.org and OpenCyc (www.cyc.com/cyc/opencyc) to refine

5



its suggestions (Section 2.2-2.4) by applying domain, range, and property
restrictions based on information derived from these sources.

Snow et al. [14] note that many approaches to relation detection fo-
cus on particular relation types such as hypernyms [27, 19], synonyms [38],
meronyms [31, 9], verb relations [39] and general purpose analogy relations
[40]. The other extreme are domain-independent approaches which extract
arbitrary relations from text corpora such as work done by Reinberger et al.
[22], Etzioni et al. [29], and Banko and Etzioni [41]. These techniques do
not consider the mapping of such relations to “valid” labels corresponding
to the domain model.

In contrast to the first group of methods, our approach is applicable
to arbitrary domain labels, but considers a number of predefined, already
axiomatized predicates and integrates their domain, range and property re-
strictions into the relation label learning algorithm. Kavalec and Svátek
[6] detect arbitrary relation types based on a semi-automatically established
mapping between these types and verbs significant for this particular rela-
tion. Ciaramita et al. [20] and Rinaldi et al. [23] also support the detection
of arbitrary relations but do not apply any external data sources to refine
their results.

Navigli and Paola’s [18] approach for enriching ontologies with term defi-
nitions from ontologies is related in regard to their use of regular expressions,
together with syntactic and semantic constraints such as domain and range
restrictions, to identify domain concepts in glosses.

Inductive Logic Programing (ILP), a technique for learning logical theo-
ries from data is another method related to this work. Nevertheless, Buitelaar
and Cimiano [3] note that, it is more relevant for ontology refinement than for
ontology learning, because ILP theories differ significantly from ontologies,
which reflect a shared understanding of a domain of interest. Nevertheless,
they emphasize the importance of analyzing how inductively derived mod-
els can supplement and support ontology learning, which they define as an
interactive and cooperative process between engineers and ontology learning
systems [42].

1.3. Paper Structure

The remainder of this paper is structured as follows: Section 2 presents
the relation labeling component and elaborates on the integration of external
structured resources into the identification process. Section 3 evaluates the
link type labeling suggestion architecture using different experimental setups.
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Section 3.4 discusses the results of the evaluations. The paper closes with
a summary of the achieved results as well as an outlook on possible future
research avenues in Section 4.

2. Method

The method presented in this section suggests labels for unlabeled rela-
tions in domain ontologies. It is independent from any particular ontology
learning system, but has been developed as a component of the framework
introduced by Liu et al. [8], which utilizes text corpora to extract domain
concepts and instances (C), as well as relations (R), both taxonomic and
unlabeled. Figure 1 illustrates the labeling process. The relation labeling
component utilizes three types of data to identify relations in a particular
domain including optional specifications of their domain, range, and prop-
erty restrictions: (i) domain documents, (ii) the XML/RDF serialized domain
ontology containing unlabeled relations (Rm∗n∗) from the ontology learning
framework [8], and (iii) a reusable “relation description” meta-ontology (Sec-
tion 2.2) which contains the set of relation labels to be used.

The system extracts verbs from sentences with terms that represent two
domain concepts or instances (Cm, Cn) participating in the relation Rmn,
and then stores this data in its knowledge base. The similarity between verb
vectors of an unlabeled relation Rm∗n∗ and the data in the knowledge base
(Section 2.1) helps determine the label of unknown links, in conjunction with
domain knowledge retrieved from sources such as DBpedia and OpenCyc.

Section 2.2-2.4 and Figure 3 describe the integration of external knowl-
edge into this process. Querying the DBpedia page found for the respective
concept label via SPARQL yields a set of links to external OWL-based on-
tologies. Many DBpedia pages contain links to both the DBpedia ontology
as well as external data sources such as OpenCyc. The referenced sources
contain structured information that describes the concepts participating in
a particular relation. Matching this information with the suggested relation
label’s constraints allows to remove invalid relation labels or to decrease their
similarity score. Concept grounding is a prerequisite and therefore a crucial
step for applying ontological constraints to refine the similarity scores as
provided by the vector space model.
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Figure 1: Architecture of the relation labeling component

2.1. Composing and Comparing Verb Vectors

The approach presented in this paper is based on corpus analysis algo-
rithms developed by Weichselbraun et al. [37].

The regular expressions are generated automatically by determining all
WordNet synonyms for a given concept1 and generating a pattern which
matches their singular and plural forms. Applying this procedure to the first
WordNet sense of the concept “solar cell”, for example, yields the list of
synonyms “solar cell, photovoltaic cell” and the regular expression “(solar
cells?)|(photovoltaic cells?)”.

Equation 1 defines the list of verbs Lmn that characterize the semantic

1We obtain the term’s sense from the input ontology. In cases where no senses are pro-
vided by the ontology, a word sense disambiguation algorithm such as the one introduced
by Pantel and Pennacchiotti [33] can be used.
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relation between the entities Cm and Cn.

Lmn = {verbs(si) | match(Cr
m, si) ∧match(Cr

n, si) (1)

∧ idx(Cr
m, si) < idx(Cr

n, si) }

Lmn is composed of the verbs occurring in sentences si together with terms
matching the regular expressions for the concepts or instances Cr

m and Cr
n.

The match operators returns true if sentence si matches at least one of the
regular expressions in the list Cr. Multiple matches of a regular expression
pair Cr

m and Cr
n at independent positions in a sentence are allowed, but the

current implementation is limited to capture two matches.
The verbs(si) operator typically includes a verb lemmatization step and

returns the infinitive form of all verbs present in sentence si. The verbs
are detected upon the part-of-speech annotations of the sentence, optionally
WordNet is used to identify wrongly classified words. The order of the con-
cepts is important for the evaluation process. We define that Rmn(Cm, Cn) :=
Rnm(Cn, Cm)−1, which effectively reverses the direction of a relation. The idx
operator in the second term of the definition ensures that the regular ex-
pression for the first entity (Cr

m) occurs before the second entity (Cr
n) in a

sentence si.
Equation 2 computes the centroid ~Vmn, which represents the verb vector

for the relation Rmn between the two concepts or instances Cm, Cn. The
operator vsm20 yields the vector space representation of the 20 most relevant
verbs in the verb list, in regard to the tf-idf [43] measure.

~Vmn =
vsm20(Lmn)∣∣vsm20(Lmn)

∣∣ (2)

The method is trained by computing the centroids for concepts and in-
stances (Cm, Cn) with known relation types (training relations) and saving the
corresponding mapping in Mmn→j which translates concept pairs to relation
labels (j). The relation label j∗ of an unlabeled relation (Rm∗n∗) between
the entries Cm∗ , Cn∗ is computed by

1. applying Equation 1 and 2 to sentences containing terms referring to
these concepts, a process that yields the centroid ~Vm∗n∗ for the unla-
beled relation;

2. comparing this centroid to all centroids with known relation label us-
ing a similarity function sim := sim(~Vm∗n∗ , ~Vmn) such as the cosine
measure; and
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3. assigning the relation label (j) of the best match (highest similarity)
to the unlabeled relation (Rm∗n∗) by applying the mapping function
Mmn→j. Section 2.4 will introduce more advanced label selection strate-
gies, and Section 3.3 will evaluate their impact on labeling performance.

Table 1 outlines this process. We determine the label (j∗) for the relation
(Rm∗n∗) between scientist and greenhouse effect based on the similarity of its

centroid (~Vm∗n∗) to the centroids of known relations (~Vmn). Those similarity
computations rely on centroids built from the list of verbs Lmn as defined in
Equation 2. In this example, the relation between oil and fossil fuel is most
similar to the unlabeled relation (sim(~Vm∗n∗ , ~Vmn) = 0.33). Therefore, its
relation label (j =subClassOf ) would be assigned to the unknown relation.

Cm, Cn
Mmn→j−−−−→ j Lmn sim

politician, carbon tax takeActionBy {raise, pay, ...} 0.12
oil, fossil fuel subClassOf {be, have, ... } 0.33
NOAA, climate change study {say, describe, ... } 0.30
scientist, green energy study {develop, use, ... } 0.29

Table 1: Determining the best matching relation label (Rm∗n∗) for the relation between
scientist (Cm∗) and greenhouse effect (Cn∗)

2.2. Integration of External Knowledge

Experts define the set of relation labels in a meta ontology to describe
the relations used in the domain ontology. This “relation description ontol-
ogy” contains the concepts necessary to specify all valid relation labels and
optional domain, range and property restrictions to clarify the use of these
labels. It is important to note that classes and relation descriptions from the
meta ontology can be reused between different domain ontologies.

The component to integrate external knowledge into the label suggestions
uses these restrictions to refine the similarities obtained from the comparison
of verb vectors as described in Section 2.1. Figure 2 visualizes the classes and
properties for the relation description meta ontology used for the following
examples. The figure also demonstrates the specification of domain and range
restrictions based on the “study” relation.

Figure 3 outlines the refinement process. The structured data integration
component obtains the entries Cm∗ and Cn∗ participating in an unlabeled re-
lation as well as a ranked list of relation labels, suggested by the vector space
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Figure 2: Relation description ontology

approach described above. It uses structured data from external sources such
as DBpedia and OpenCyc to ground Cm∗ , Cn∗ to the relation description con-
cepts that specify the restrictions on the label’s use. The system then verifies
the constraints for each suggested relation label, adjusts its weights accord-
ingly, and computes a refined ranking of labels for the relation between the
entries Cm∗ and Cn∗ .

Figure 4 illustrates the verification process for the relation between the
concepts NOAA and climate change. The concepts are of type Organization
and Topic. Combining this information with the domain and range restric-
tions specified for the relation study and studiedBy suggests that it is unlikely
that studiedBy is the correct label, because it violates the relation type’s do-
main restrictions. In contrast, the link label study satisfies domain and range
restrictions, which increases the likelihood that it is the correct label.

The code snippet below illustrates an ontology fragment for the relation
type study, based on our conceptualization of the climate change domain
(the relation label study may apply to the range of Person and Organization
in other domains such as medicine and psychology). The concept type Un-
known is added to all domain/range restrictions implicitly, in order to cover
situations where no grounding was possible.

<owl:ObjectProperty rdf:ID="study">
<rdfs:domain>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="rd:Person"/>
<owl:Class rdf:about="rd:Organization"/>
<owl:Class rdf:about="rd:Unknown"/>

</owl:unionOf>
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Figure 3: Integration of external knowledge

</owl:Class>
</rdfs:domain>
<rdfs:range>
<owl:Class>
<owl:unionOf rdf:parseType="Collection">
<owl:Class rdf:about="rd:Topic"/>
<owl:Class rdf:about="rd:Unknown"/>

</owl:unionOf>
</owl:Class>

</rdfs:range>
</owl:ObjectProperty>

Using OWL Lite property restrictions on classes from the relation de-
scription ontology helps include even more information on the proper usage
of a relation. Only an Organization typed concept, for example, can be
a subClassOf another Organization typed concept. The following example
specifies this restriction on the Organization concept in the relation descrip-
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NOAA climate change
?

rd:Organization rd:Topic

rdf:type rdf:type

study
  domain: {Organization, Person}
  range: {Topic}

studiedBy
  domain: {Topic}
  range  : {Organization, Person}

Figure 4: Considering external knowledge when selecting link types

tion ontology:

<owl:Class rdf:ID="rd:Organization">
<rdfs:subClassOf>

<owl:Restriction>
<owl:onProperty rdf:resource="#subClassOf" />
<owl:allValuesFrom rdf:resource="#Organization">

</owl:Restriction>
</rdfs:subClassOf>

</owl:Class>

Before the restrictions of the relation description ontology can be applied
in the semantic inference and validation step, the system has to ground the
concepts of the domain ontology using data from external sources such as
DBpedia and OpenCyc. The goal of this step is to assign one of the concept
types defined in the relation description ontology to every concept.

Concept labels from the domain ontology are mapped to DBpedia page
names. In cases where no corresponding DBpedia page exists, or the result
is a DBpedia disambiguation page, no grounding is possible. The issue of
disambiguation will be addressed in future research. Figure 5 illustrates the
mapping of the concept NOAA from the example above to its respective
types (Organization). The system follows links from DBpedia to external
ontologies such as OpenCyc, and applies an ontology reasoner to the external
ontologies which tries to map the respective external classes to a relation
description ontology concept.

The relation description ontology specifies its classes as the union of exter-
nal class URIs, which are mapped onto the respective class in the grounding
process. This process provides a set of ontology fragments to ground the
domain concepts in the relation description ontology, as illustrated in the
following example:
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Figure 5: Grounding example for the concept ”NOAA”

<!-- we define rd:Organization as the union of external classes which
are mapped to rd:Organization-->

<owl:Class rdf:ID=rd:Organization>
<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="http://sw.opencyc.org/concept/Mx4r..." />
<owl:Class rdf:about="http://dbpedia.org/ontology/Organisation" />
. . .

</owl:unionOf>
</owl:Class>

<!-- information derived from reasoning -->
<http://dbpedia.org/page/NOAA> <rdfs:subClassOf

rdf:resource="http://sw.opencyc.org/concept/Mx4..."/>

2.3. Knowledge Base

The knowledge base of the framework consists of (i) a list of all centroids
~Vminj

representing the relation Rminj
, (ii) the mapping Mmn→j assigning a
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label j to the relation Rminj
, and (iii) the ontology O which consists of the

relation description ontology Ord and the ontology fragments {O1, O2, ...On}
retrieved from external sources, containing formalized knowledge of the do-
main (Section 2.2).

KB = ({~Vm1n1 , ...~Vmknl
}, Mmn→j, Ord, O1, ..., On) (3)

2.4. Relation Labeling

The first step in determining the relation’s label is computing the similar-
ity (sim) between centroid ~Vm∗n∗ representing the unlabeled relation (Equa-
tion 1 and 2) and and all known centroids in the knowledge base (see Sec-
tion 2.1). Applying semantic inference and validation to the ontology frag-
ments refines the similarity as outlined in Equation 4 by computing weights
wo,m∗,n∗ to integrate domain knowledge (Equation 5) into the refined simi-
larity smn.

smn = wo,m∗n∗(Mmn→j(Cm, Cn)︸ ︷︷ ︸
j

) · sim(~Vm∗n∗ , ~Vmn) (4)

The current architecture uses the cosine measure as similarity function. The
factor wo,m∗,n∗ considers domain knowledge using the following heuristic.

wo,m∗n∗(j) =



1.0 if O |= Cm∗ ∈ dom(j) ∧
O |= Cn∗ ∈ range(j) ∧O(j(Cm∗ , Cn∗))

0.01 if O |= Cm∗ 6∈ dom(j) ∨
Cn∗ 6∈ range(j) ∨ ¬O(j(Cm∗ , Cn∗))

0.8 if O |= Cm∗ ∈ dom(j) ∨
Cn∗ ∈ range(j)

0.6 otherwise.

(5)

Equation 5 determines the weights wo,m∗n∗ based on whether the ontology
implies (|=) the domain, range and property restrictions from the ontology
or not. In cases where the component cannot verify any domain and range
restrictions (relations with no domain and range constraints; concepts for
which no type could be identified), a weight of 0.6 is assigned. If the sug-
gested relation type only meets the domain or range restrictions – as the type
of one of the two concepts could not be determined – the heuristic assigns a
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weight of 0.8. The weight of 0.01 is applied in cases where the restrictions on
the suggested relations are in conflict with the concept types, the value was
chosen in order to preserve the information from the original ranking. The
weights (1.0, 0.8, 0.6 and 0.01) were chosen after conducting a series of exper-
iments with different weight distributions and were selected independently
of the evaluations.

From the computed similarity smn and the mapping Mmn→j we determine
a list of triples, which contains the relation Rmn, the matching relation label
j, and its similarity to the unlabeled relation Rm∗n∗ .

The method determines the relation label j∗ using one of the following
strategies: (i) selecting the relation label j from the relation Rmn with the
highest similarity smn, (ii) computing the average of the similarity measures
smn for each relation label j (over all training relations associated with this
relation label) and selecting the label with the highest average similarity, or
(iii) determining the average of the highest 30% of the similarity measures
for each relation label j, and selecting the label corresponding to the highest
average. The evaluation in Section 3 compares the performance of these three
approaches.

Cm,Cn
Mmn→j−−−−→ j sim constraints wo,m∗n∗ smn

domain range

oil, fossil fuel subClassOf 0.33

v v 0.01 0.003
c - 0.8 0.264
- c 0.8 0.264
- - 0.6 0.198

NOAA,
climate
change

study 0.30

c c 1.00 0.30
c - 0.8 0.24
- c 0.8 0.24
- - 0.6 0.18

Table 2: Label suggestion for the relation scientist (Person) → greenhouse effect (Object-
Topic). The letters “c” and “v” indicate information “corresponding to” or “violating”
domain constraints; “-” shows that concept grounding was not successful

Table 2 exemplifies the weighting process with the unlabeled relation sci-
entist → greenhouse effect. The system distinguishes four degrees of success
in terms of concept grounding: (i) both concepts could be grounded cor-
rectly, (ii) only the subject was grounded, (iii) only the object was grounded,
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and (iv) no grounding was possible. Computing the vector space similar-
ity between the known and unlabeled relations yields the similarity values
(sim := sim(~Vm∗n∗ , ~Vmn)). The mapping function Mmn→j determines the
corresponding labels (j) for the concept pairs. External domain knowledge
refines these similarities by computing weights based on Equation 5, which
considers domain, range and property restrictions.

Table 2 outlines this process: the first step computes similarities between
the verb vectors in the knowledge base and the verb vectors of the unla-
beled relation between scientist and greenhouse effect. The mapping Mmn→j

yields the relation label (j) which corresponds to the concept pairs from
the knowledge base. The domain restrictions are then incorporated based
on the grounding of the concepts from the unlabeled relation (scientist and
greenhouse effect). The suggested relation type subClassOf receives a weight
of only 0.01 because the concept types (Person, ObjectTopic) conflict with
property restrictions for the concept types – i.e., if the subject of subClas-
sOf is a Person, its object has to be of type Person as well. If only the
subject or object concept type is known and there is no conflict, then the
weighting value of 0.8 is used (Equation 5). The relation type study satisfies
domain, range and property restrictions and therefore receives a weight of
1.0. In cases where both concept types were identified correctly, the method
suggests the label study. If external domain knowledge could not be incor-
porated via grounding, the system would (wrongly) suggest the subClassOf
type.

2.5. Integration of User Feedback

The knowledge base (KB) stores all training relations – i.e., known re-
lations and their types from the domain ontology, as well as the (optional)
relations specified by domain experts manually. The system presents sugges-
tions for unlabeled relations to domain experts who either confirm or discard
the suggested relations. User feedback on relation types is incorporated by
adding the relation Rminj

and the corresponding centroid ~Vminj
and its map-

ping Mmn→j, to the knowledge base.
Results violating the relation description ontology are reported back to

the ontology engineer, who might either update the ontology or discard the
automatically generated feedback. This semi-automated process refines the
knowledge base and constantly improves the component’s accuracy.
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3. Evaluation

This section describes the experiments conducted to evaluate the per-
formance of the relation labeling method introduced in Section 2. Two do-
main experts manually extended relation sets that were identified by the
webLyzard ontology extension architecture [8] for the climate change do-
main. The resulting set of 313 high-quality relations (R) was doubled in
size by adding relations with the concepts in reverse order (R−1, e.g. car
subClassOf−−−−−−−→ vehicle; vehicle

superClassOf−−−−−−−−→ car). These labels were verified by
two other domain experts who double-checked all labels independently with
an inter-expert agreement of 90.2%. Most of the conflicting classifications
were caused by ambiguities between takeActionBy/actionTakenBy and effect-
On/affectedBy. A smaller percentage of dissent related to subClassOf/super-
ClassOf versus effectOn/affectedBy.

To improve validity, a pre-processing step eliminated relations that were
identified in fewer than ten distinct sentences within the corpus. Based on
the provided corpus, such relations cannot be considered domain-specific.
Applying this cleanup process reduced the size of the evaluation set from 626
to 461 relations. Table 3 contrasts the number of relations per relation type
defined by the domain experts with the number of relations available after
the cleanup process.

before after
Rel. label cleanup cleanup

subClassOf 55 41
superClassOf 56 40
use 58 48
usedBy 58 48
effectOn 67 48
affectedBy 67 48
takeActionBy 70 50
actionTakenBy 70 46
study 62 48
studiedBy 62 44

Table 3: Number of relations per relation type before and after the cleanup step
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3.1. Domain-Specific Evaluation Corpus

To create the evaluation corpus, the webLyzard suite of Web mining tools
(www.weblyzard.com) was used to crawl 156 Anglo-American news media
sites selected from the Newslink.org, Kidon.com and ABYZNewsLinks.com
directories. From the 200,000 documents gathered each week, a domain de-
tection service based on regular expressions compiled an extensive domain-
specific corpus consisting of 157,817 documents published between December
2008 and July 2009. Additional documents where gathered from environmen-
tal blogs and the Web sites of environmental organizations.

The evaluation component uses the corpus to create vector space repre-
sentations of verbs appearing in (i) the same sentence as, or (ii) in a sliding
window of five and seven words together with regular expression matches
for concepts or instances (Cr

m, Cr
n). Table 4 lists the relations (R) used for

the labeling process and the number of sentences in the corpus satisfying
Equation 1 (see Section 2) from which verb vectors for that particular rela-
tion type could be extracted. We used a total of 160,456 sentences from the
corpus to evaluate the method, 126,163 of which were unique.

Rel. label sentences Rel. label−1 sentences

subClassOf 8,877 superClassOf 8,717
use 11,780 usedBy 19,751
study 27,794 studiedBy 26,565
effectOn 6,605 affectedBy 4,229
takeActionBy 29,442 actionTakenBy 16,696

Table 4: Relation labels used in the evaluation and number of sentences per relation found
in the corpus

Similar to Snow et al. [19], we trained each directed relation in the
knowledge base with a set of about 50 pre-defined concept-relation patterns.
Table 3 provides the exact numbers, while Table 5 contains examples of such
patterns.

The number of verbs extracted from the corpus depends on the extraction
mode (whole sentence versus sliding window). In whole sentence mode the
average number of extracted verbs was 1,398.88 per training relation, with
a maximum of 41,039. For a seven word sliding window the numbers are
obviously lower, 313.58 verbs on average with a maximum of 8,734. As part
of the evaluation, two different tf-idf significance thresholds (20 and 150) for
building the verb vectors (Equation 2) were compared as well.
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Cr
m Cr

n Rel. label

wind energ(y|ies) energy sources? subClassOf
solar cells?|photovoltaic cells? solar energ(y|ies)|solar power use
compan(y|ies) energy savings? takeActionBy

Table 5: Example training patterns

3.2. Integration of External Knowledge

A correct concept grounding is a precondition for verifying range, domain
and property restrictions (see Section 2.2). Therefore, the relation description
ontology is used to determine the type of concepts participating in unlabeled
relations. If the concept grounding suggests multiple possible concept types,
simple preference rules supplied by domain experts (e.g., Person is preferred
over ObjectTopic) are used to resolve these conflicts. For example, a politician
is of type Person, but also of the OpenCyc type thing existing stably in time.
In contrast, an ObjectTopic such as fossil fuel should never be grounded to
the Person class.

Table 6 shows a number of concept examples and their respective types.
Concepts for which no type could be discovered are labeled as unknown and
treated according to Equation 5.

concept or instance (C) type

expert, scientist rd:Person
NOAA, IPCC, OPEC rd:Organization
fossil fuel, ecosystem rd:ObjectTopic
exploitation, peak oil rd:AbstractTopic

Table 6: Concept and instance types in the relation description ontology

Using the described method for determining the concept types succeeded
in 110 out of 168 cases. Table 7 presents the results of a manual evaluation
of the concept grounding performed by domain experts.

In seven cases the grounding yielded incorrect concept types. Some of
the links from DBpedia to OpenCyc are questionable, resulting in incor-
rectly grounded concepts. For example, the concept bus (www.dbpedia.org-
/resource/Bus) has an owl:sameAs link to OpenCyc’s bus line (sw.Open-
Cyc.org/2008/06/10/concept/Mx4...), which is an OpenCyc subclass of trans-
portation organization, and therefore gets grounded to the concept Organiza-
tion, although it should be an ObjectTopic. DBpedia’s redirects (see Figure 4)
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type detection number of concepts

grounded
correct 110 of 168 (65.4%)
incorrect 7 of 168 (4.2%)

not grounded
no DBpedia entry found 10 of 168 (6.0%)
no path to a matching concept 41 of 168(24.4%)

Table 7: Success of the concept grounding of all 168 concepts

can be another source of problems – e.g., activist is redirected to activism
which we therefore map to AbstractTopic instead of the correct Person. Such
cases have a negative impact on the results of the relation label suggestion
system – it is better to have no type information at all than an incorrect one.

For ten concepts, no DBpedia page could be found. The concept labels
simply do not exist in DBpedia, examples are: combustion process, oil de-
mand, environmental problem. Possible ways to tackle this problem in the
future are the acquisition of synonyms or term resolution techniques such as
the ones used by Wong et al. [44].

For 41 concepts, a DBpedia page was found but did not provide sufficient
information to detect the type. In those cases no links to OpenCyc or the
DBpedia ontology were available, or those links did not yield appropriate
grounding information. Occasionally, the DBpedia disambiguation page was
returned, for example for pipeline or creation. Future research will apply
disambiguation techniques to address such issues. For other concepts such
as photovoltaic effect, DBpedia does not provide sufficient structured data to
successfully apply concept grounding. The ongoing extension and refinement
of DBpedia and other semantic resources will improve the precision and recall
of our approach.

3.3. Results

In the experiments, the relation label suggestion component assigns an
ordered list of the labels introduced in Table 4 to each unlabeled relation.
The results are based on the average of seven evaluation runs with 461 re-
lations from the test ontology, which were randomly split into training and
testing sets of equal size for each run. Table 8 summarizes the configuration
parameters used in the subsequent experiments.

Three different aggregation strategies were used to generate the ordered
list of label suggestions (compare Section 2.4): (i) suggest the single best
training relation with the highest similarity value, (ii) apply the average
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No. Target Description
1 verbs This setting affects the process of collecting verbs from the

sentences matching the regular expressions representing a
particular relation. The verb extraction modes (e.g.,
whole sentence, sliding window size 7, or sliding window size
5 ) determine the verbs to be collected from a sentence.

2 vector-
building

The initial implementation used simple verb frequencies to
build the verb vectors. We compute verb significance with
tf-idf and evaluates the use of the 20 and 150 most signif-
icant verbs, denoted as tf-idf 150 and tf-idf 20.

3 relations The various aggregation modes of similarity scores, de-
noted as (i)-(iii) are discussed below. For rows marked with
direction: yes, both the type of a relation and its direction
are computed. Rows identified by the term direction: no
only consider the correct relation type for the evaluation.

4 grounding The evaluation distinguishes between suggestions derived
from corpus analysis (vector space model), and sugges-
tions refining this model by applying semantic inference
and validation (SIV). Results solely obtained using the
vector space model are marked with VSM. SIV denotes ex-
periments which apply the vector space model and external
knowledge.

Table 8: Configuration settings for the relation suggestion component

similarity value per relation label, and (iii) use the average of the best 30%
of relations per predicate. The results for these three distinct strategies
are indicated by the literals (i), (ii) and (iii) in Table 9, which compares
the strategies based on the average ranking precision (ARP). This measure
specifies the average number of tries required to pick the correct relation label
from an ordered list of suggestions (the table contrasts computations based
on a sliding window size with those based on whole sentences). The ARP
measure is highly relevant to capture the usefulness of a method to assist
domain experts in assigning relation labels - it indicates how many choices
the domain expert has to check on average to identify the correct label.

The ARP for randomly chosen relation labels is 3.0 for guessing the cor-
rect relation label and 5.5 for picking the right relation label and direction
(those values are part of the evaluation tables denoted as Baseline: rand).
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To demonstrate the potential of semantic inference and validation, we con-
ducted a second evaluation restricted to a set of 437 (from 461) relations
for which at least one concept type - according to the relation description
ontology - could be extracted. The results of these additional computations
are given in parenthesis.

Method direction sl. window 7 sentence

(i)

SIV no 1.655 (1.607) 1.533 (1.479)
Baseline: VSM no 2.044 (2.018) 1.851 (1.816)
Baseline: rand no 3.000 (3.000) 3.000 (3.000)
SIV yes 2.139 (2.028) 2.178 (2.058)
Baseline: VSM yes 3.091 (3.036) 3.196 (3.136)
Baseline: rand yes 5.500 (5.500) 5.500 (5.500)

(ii)

SIV no 1.616 (1.550) 1.535 (1.463)
Baseline: VSM no 1.924 (1.877) 1.872 (1.820)
Baseline: rand no 3.000 (3.000) 3.000 (3.000)
SIV yes 2.024 (1.912) 2.116 (2.008)
Baseline: VSM yes 2.726 (2.656) 2.997 (2.940)
Baseline: rand yes 5.500 (5.500) 5.500 (5.500)

(iii)

SIV no 1.591 (1.530) 1.520 (1.451)
Baseline: VSM no 1.915 (1.874) 1.847 (1.797)
Baseline: rand no 3.000 (3.000) 3.000 (3.000)
SIV yes 2.035 (1.930) 2.103 (1.993)
Baseline: VSM yes 2.778 (2.716) 3.003 (2.946)
Baseline: rand yes 5.500 (5.500) 5.500 (5.500)

Table 9: Average Ranking Precision (ARP) of the SIV method, compared to VSM and
random baselines

Table 9 shows that the combined approach including semantic validation
(SIV ) clearly outperforms the VSM-only method. In the case of non-directed
relations using aggregation strategy (iii) and sentence mode, for example,
an ARP of 1.52 (1.45) could be reached with the integration of structured
data, as compared to 1.85 (1.80) with VSM only. For directed relations,
we observe an ARP of 2.10 (1.99) for SIV as compared to 3.00 (2.95) for
VSM. The evaluations presented in Table 9 were computed with a tf-idf 20
configuration, which uses the 20 most significant verbs per relation in the
verb vectors (the evaluation with a tf-idf 150 configuration yielded similar
results and is therefore omitted for brevity).

23



Applying Scarlet (scarlet.open.ac.uk), a method solely based on querying
Semantic Web resources, to the evaluation task only provided relation types
for eight out of 461 evaluated relations. This is attributable to the knowl-
edge acquisition bottleneck discussed in the introduction. Four out of eight
relations were labeled correctly by Scarlet. We also encountered a case in
which Scarlet inaccurately labeled relations due to an incorrect subClassOf
relation in an underlying ontology (oil subClassOf industry) as described by
d’Aquin et al. [28]. Currently, Scarlet does not significantly influence the
evaluation results, so it is not included in Table 9 and 10. Nevertheless, the
authors decided to incorporate Scarlet into the presented framework, since
the growth of the Semantic Web will result in significant improvements in
terms of Scarlet’s precision recall.
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Method direction sl. window 7 sentence

(i)

SIV no 66.96 (68.12) 70.56 (71.73)
Baseline: VSM no 56.15 (56.68) 64.78 (65.61)
Baseline: KS no 32.41 (33.10) 27.41 (28.45)
Baseline: rand no 20.00 (20.00) 20.00 (20.00)
SIV yes 48.32 (49.96) 43.79 (45.10)
Baseline: VSM yes 33.23 (33.99) 26.65 (26.95)
Baseline: KS yes 19.24 (19.60) 13.61 (14.24)
Baseline: rand yes 10.00 (10.00) 10.00 (10.00)

(ii)

SIV no 68.14 (69.64) 71.55 (73.17)
Baseline: VSM no 61.55 (62.66) 63.04 (64.16)
Baseline: KS no 31.24 (32.55) 29.68 (30.25)
Baseline: rand no 20.00 (20.00) 20.00 (20.00)
SIV yes 51.30 (52.80) 45.47 (46.48)
Baseline: VSM yes 39.13 (39.91) 27.45 (27.41)
Baseline: KS yes 18.36 (19.22) 16.83 (16.96)
Baseline: rand yes 10.00 (10.00) 10.00 (10.00)

(iii)

SIV no 69.50 (70.75) 72.61 (74.03)
Baseline: VSM no 61.80 (62.59) 63.79 (64.69)
Baseline: KS no 33.57 (34.56) 29.86 (30.71)
Baseline: rand no 20.00 (20.00) 20.00 (20.00)
SIV yes 51.55 (52.99) 47.20 (48.24)
Baseline: VSM yes 37.95 (38.59) 28.26 (28.20)
Baseline: KS yes 20.41 (20.99) 16.51 (16.95)
Baseline: rand yes 10.00 (10.00) 10.00 (10.00)

Table 10: Percentage of relation labels which were correctly identified on the first guess
(sliding window size of seven words)
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The results for extracting verbs with sliding windows produced similar
results as verbs from whole sentences, although the sentence configuration
seems to perform better when only suggesting the relation type but not the
direction (direction: no). Sliding windows, by contrast, extract a narrower
context and therefore achieve better ARP scores when also detecting relation
direction.

The average similarity over all relations grouped by relation label (ii) and
average of the best 30% of relations per label (iii) strategies deliver the best
results and outperform the single best vector (i) approach. We attribute this
to the fact that strategies including average building are more robust against
outliers, which may harm the performance of (i).

Table 10 summarizes the results as a percentage of correctly identified
relation labels, more precisely the percentage of relations correctly identified
by the first suggestion (as opposed to 2nd guess correct in Table 11). The
literals (i)-(iii) have the same meaning as in Table 9. This table also contains
an additional baseline score Baseline: KS, which is based on an adopted
version of the above expectation measure by Kavalec and Svátek [6]. To
integrate this measure into the evaluation process, we had to replace the
semi-automatic mapping with a custom heuristic which does not require the
input of domain experts.

The evaluation results provided in Table 10 present a system performance
of over 70% of correctly labeled suggestions for non-directional configurations,
and around 50% for detecting relation labels including direction. The obser-
vation made for the ARP measure, namely that the sentence verb extraction
mode is superior regarding the non-directional (direction: no) settings, and
sliding windows are better in the directional (direction: yes) setting, holds
for first guess and second guess (see below), too. The performance of the
adopted above expectation measure was rather limited. We attribute this
not to the heuristic itself, but to the difficulty of transforming the method
appropriately to our automated label suggestion and evaluation schema.

Table 11 presents the results where either the first or second relation label
are correct. For the sake of brevity we limit this table to strategy (iii).

It is obviously more challenging to guess the correct relation type and
direction out of ten possibilities with a probability of 10% of randomly picking
the correct label (compare Table 4), as compared to guessing only the relation
type with a 20% chance of randomly guessing the correct label.

Conducting a Chi-squared test on the results presented in Table 11 showed
that the observable increases in accuracy are significant at the 0.01 level as
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Method direction sl. window 7 sentence

(iii)

SIV no 84.29 (85.47) 86.40 (87.84)
Baseline: VSM no 76.21 (76.92) 77.33 (78.23)
Baseline: KS no 52.15 (53.61) 45.99 (46.53)
Baseline: rand no 40.00 (40.00) 40.00 (40.00)
SIV yes 77.70 (79.42) 76.65 (78.44)
Baseline: VSM yes 61.86 (62.65) 56.52 (57.13)
Baseline: KS yes 34.90 (35.73) 28.54 (29.00)
Baseline: rand yes 20.00 (20.00) 20.00 (20.00)

Table 11: Percentage of correctly identified relation labels on second guess in the evaluation
(sliding window size of seven words)

compared to the VSM, KS and rand baseline scores for directed relations,
and at the 0.05 level in the case of non-directed relations. The accuracy
of 72.61 % for determining the correct label at the first guess (86.40 % for
second guess) in Table 11 is equivalent to an F-measure of 0.84 (0.92) when
retrieving relation types only. For relations where at least one concept could
be grounded, values of 74.03 % for first suggestion correct and 87.84% for first
or second suggestion correct yield F-measures of 0.85 and 0.94, respectively.
A comparison between the VSM method based on first guess data and other
baseline scores also delivers Chi-squared significance values above 99.9%.

3.4. Interpretation

As expected, additional experiments show that the performance of the
proposed methods depends on the specific relation type. The approach per-
forms best for the relation type study with up to 90% of correct suggestions
(for relations including direction) at the first guess, and an ARP around 1.15.
Study is particularly well suited as it has a clearly defined subject domain
(Person, Organization) and object range (ObjectTopic, AbstractTopic). The
use relation performed quite well, too, with a first guess correct for the direc-
tional setting of approximately 65% (nodir: 84%). As already mentioned at
the beginning of Section 3, even domain experts disagreed on the use of the
effectOn versus the takeActionBy relation types, which is also reflected by the
lower accuracy in the individual performances of the respective predicates.
The subClassOf/superClassOf relations are characterized by varying accu-
racy depending on the configuration settings, but the average performance
is the lowest among all relations, especially for directional settings.
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Table 12 presents an overview of the a posteriori accuracy of relation
detection approaches found in literature to provide the reader with an im-
pression of the performance of current state-of-the-art solutions. Please note
that these methods are not directly comparable due to heterogeneous cor-
pora, evaluation methods and settings. Another important factor to con-
sider is whether evaluations are conducted a priori or a posteriori. Schutz
and Buitelaar [45] point out that the average precision of a system can easily
be 10% higher if evaluated a posteriori. We provide a priori evaluation re-
sults because the correct labels of the evaluation relations were defined before
our method was applied.

Authors Domain Evaluation Corpora % correct

Ciaramita et al. [20] Biomedicine GENIA 76.5%
Reinberger et al. [22] Biomedicine Medline abstracts 42.0%

Rinaldi et al. [23] Biomedicine GENIA 68.2 - 84.8%

Table 12: Approaches towards relation detection (accuracy in the case of Rinaldi et al.
varies by corpus and relation type)

Overall, the method presented in this paper is particularly promising in
situations where the domain and range restrictions of the relations used in the
domain ontology are rather tight, especially if additional property restrictions
on classes are available.

4. Conclusions

This paper presents a method for computing relation labels for unla-
beled relations based on corpus analysis as well as semantic inference and
validation. It evaluates several strategies for integrating a machine learning
technique based on the vector space model with structured data from exter-
nal sources such as DBpedia and OpenCyc. The main contributions of this
research are: (i) introducing a method that integrates external knowledge
with a machine learning approach; (ii) conducting an extensive formal evalu-
ation to assess the performance of this method; (iii) outlining the advantages
of hybrid approaches and current problems with methods solely relying on
structured data.

The evaluation presented in Section 3 shows that refining relation label
suggestions using external data sources yields superior results. Currently,
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certain data quality issues such as incorrect mappings (e.g. activist → ac-
tivism → AbstractTopic) and missing data (e.g. Scarlet, where only eight
out of 159 relations could be found) remain to be solved for the method to
unfold its full potential. Nevertheless, as methods leveraging Semantic Web
resources become more popular and collaborative approaches such as DB-
pedia.org and GeoNames.org continue to attract volunteers, the quality and
quantity of structured data sources is expected to increase significantly.

Future research should emphasize the integration of additional, heteroge-
neous data sources - including strategies for resolving conflicts between anno-
tations from multiple sources. Disambiguation and mediation techniques are
a cornerstone for addressing this challenge and providing a fine-grained and
accurate assessment of relation types. Support for multiple relations between
concepts, and thresholds to detect if no relation label at all is appropriate
in a particular case, will extend the range of possible applications for the
method.
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[6] M. Kavalec, V. Svátek, A study on automated relation labelling in ontol-
ogy learning, in: P. Buitelaar, P. Cimiano, B. Magnini (Eds.), Ontology
Learning from Text: Methods, Evaluation and Applications, no. 123 in
Frontiers in Artificial Intelligence and Applications, IOS Press, 2005,
pp. 44–58.

[7] R. Girju, P. Nakov, V. Nastase, S. Szpakowicz, P. Turney, D. Yuret,
Semeval-2007 task 04: Classification of semantic relations between nom-
inals, in: Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval-2007), Association for Computational Linguistics,
Prague, Czech Republic, 2007, pp. 13–18.

[8] W. Liu, A. Weichselbraun, A. Scharl, E. Chang, Semi-automatic ontol-
ogy extension using spreading activation, Journal of Universal Knowl-
edge Management 0 (1) (2005) 50–58.

[9] P. Cimiano, J. Wenderoth, Automatic acquisition of ranked qualia struc-
tures from the web, in: Proceedings of the 45th Annual Meeting of the
Association for Computational Linguistics, Vol. 45, The Association for
Computer Linguistics, 2007, pp. 888–895.

[10] M. Poesio, A. Almuhareb, Identifying concept attributes using a clas-
sifier, in: Proceedings of the ACL-SIGLEX Workshop on Deep Lexi-
cal Acquisition, Association for Computational Linguistics, Ann Arbor,
Michigan, 2005, pp. 18–27.

[11] A. Maedche, V. Pekar, S. Staab, Ontology learning part one - on dis-
covering taxonomic relations from the web, in: N. Zhong, J. Liu, Y. Yao
(Eds.), Web Intelligence, Springer, 2002, pp. 301–322.

[12] D. Zelenko, C. Aone, A. Richardella, Kernel methods for relation extrac-
tion, The Journal of Machine Learning Research 3 (2003) 1083–1106.

[13] C. Nicolae, G. Nicolae, S. Harabagiu, UTD-HLT-CG: Semantic archi-
tecture for metonymy resolution and classification of nominal relations,
in: Proceedings of the Fourth International Workshop on Semantic
Evaluations (SemEval-2007), Association for Computational Linguistics,
Prague, Czech Republic, 2007, pp. 454–459.

30

http://scholar.google.com/url?sa=U&q=http://nb.vse.cz/~svatek/olp05.pdf
http://scholar.google.com/url?sa=U&q=http://nb.vse.cz/~svatek/olp05.pdf
http://acl.ldc.upenn.edu/W/W07/W07-2003.pdf
http://acl.ldc.upenn.edu/W/W07/W07-2003.pdf
http://www.jukm.org/jukm_0_1/semi_automatic_ontology_extension
http://www.jukm.org/jukm_0_1/semi_automatic_ontology_extension
http://www.aclweb.org/anthology/W/W05/W05-1003
http://www.aclweb.org/anthology/W/W05/W05-1003
http://www.aifb.uni-karlsruhe.de/~sst/Research/Publications/web-intelligence.pdf
http://www.aifb.uni-karlsruhe.de/~sst/Research/Publications/web-intelligence.pdf
http://portal.acm.org/citation.cfm?id=944919.944964
http://portal.acm.org/citation.cfm?id=944919.944964
http://www.aclweb.org/anthology/W/W07/W07-2101
http://www.aclweb.org/anthology/W/W07/W07-2101


[14] R. Snow, D. Jurafsky, A. Y. Ng, Semantic taxonomy induction from
heterogenous evidence, in: Proceedings of the 21st International Con-
ference on Computational Linguistics and the 44th annual meeting of
the Association for Computational Linguistics (ACL), Association for
Computational Linguistics, Morristown, NJ, USA, 2006, pp. 801–808.

[15] M. Ruiz-Casado, E. Alfonseca, P. Castells, Automatising the learning
of lexical patterns: An application to the enrichment of wordnet by
extracting semantic relationships from wikipedia, Data & Knowledge
Engineering 61 (3) (2007) 484 – 499.

[16] A. Zouaq, R. Nkambou, Enhancing learning objects with an ontology-
based memory, IEEE Transactions on Knowledge and Data Engineering
21 (2009) 881–893.

[17] R. Navigli, P. Velardi, Learning domain ontologies from document ware-
houses and dedicated web sites, Computational Linguistics 30 (2) (2004)
151–179.

[18] R. Navigli, P. Velardi, Enriching a formal ontology with a thesaurus: an
application in the cultural heritage domain, in: Proceedings of the 2nd
Workshop on Ontology Learning and Population: Bridging the Gap be-
tween Text and Knowledge, Association for Computational Linguistics,
Sydney, Australia, 2006, pp. 1–9.

[19] R. Snow, D. Jurafsky, A. Y. Ng, Learning syntactic patterns for auto-
matic hypernym discovery, in: L. K. Saul, Y. Weiss, L. Bottou (Eds.),
Advances in Neural Information Processing Systems 17, MIT Press,
Cambridge, MA, 2005, pp. 1297–1304.

[20] M. Ciaramita, A. Gangemi, E. Ratsch, J. Saric, I. Rojas, Unsupervised
learning of semantic relations between concepts of a molecular biology
ontology, in: P. Buitelaar, P. Cimiano (Eds.), Ontology Learning and
Population: Bridging the Gap between Text and Knowledge, Vol. 167
of Frontiers in Artificial Intelligence and Applications, IOS Press, Ams-
terdam, Netherlands, 2008, pp. 91–103.

[21] S. Buchholz, E. Marsi, CoNLL-X shared task on multilingual depen-
dency parsing, in: Proceedings of the 10th Conference on Computational
Natural Language Learning, 2006, pp. 189–210.

31



[22] M.-L. Reinberger, P. Spyns, A. J. Pretorius, W. Daelemans, Automatic
initiation of an ontology, in: R. Meersman, Z. Tari (Eds.), On the Move
to Meaningful Internet Systems 2004: CoopIS, DOA, and ODBASE,
Vol. 3290 of Lecture Notes in Computer Science, Springer, Berlin /
Heidelberg, 2004, pp. 600–617.

[23] F. Rinaldi, G. Schneider, K. Kaljurand, M. Hess, M. Romacker, An
environment for relation mining over richly annotated corpora: the case
of genia., BMC Bioinformatics 7 (S-3) (2006) S3.

[24] D. Sánchez, A. Moreno, Learning non-taxonomic relationships from web
documents for domain ontology construction, Data & Knowledge Engi-
neering 64 (3) (2008) 600–623.

[25] C. Giuliano, A. Lavelli, D. Pighin, L. Romano, FBK-IRST: Kernel meth-
ods for semantic relation extraction, in: Proceedings of the Fourth In-
ternational Workshop on Semantic Evaluations (SemEval-2007), Asso-
ciation for Computational Linguistics, Prague, Czech Republic, 2007,
pp. 141–144.

[26] M. Chagnoux, N. Hernandez, N. Aussenac-Gilles, An interactive pattern
based approach for extracting non-taxonomic relations from texts, in:
P. Buitelaar, P. Cimiano, G. Paliouras, M. Spilliopoulou (Eds.), Work-
shop on Ontology Learning and Population (associated to ECAI 2008)
(OLP), University of Patras, Patras, Greece, 2008, pp. 1–6.

[27] M. A. Hearst, Automatic acquisition of hyponyms from large text cor-
pora, in: Proceedings of the Fourteenth International Conference on
Computational Linguistics (COLING’92), Nantes, France, 1992, pp.
539–545.

[28] M. d’Aquin, E. Motta, M. Sabou, S. Angeletou, L. Gridinoc, V. Lopez,
D. Guidi, Toward a new generation of semantic web applications, IEEE
Intelligent Systems 23 (3) (2008) 20–28.

[29] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A. Popescu, T. Shaked,
S. Soderland, D. Weld, A. Yates, Web-scale information extraction in
knowitall:(preliminary results), in: Proceedings of the 13th international
conference on World Wide Web, ACM, New York, NY, USA, 2004, pp.
100–110.

32

http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi7S.html#RinaldiSKHR06
http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi7S.html#RinaldiSKHR06
http://dblp.uni-trier.de/db/journals/bmcbi/bmcbi7S.html#RinaldiSKHR06
http://nlp.cs.swarthmore.edu/semeval/program.shtml
http://nlp.cs.swarthmore.edu/semeval/program.shtml
ftp://ftp.irit.fr/IRIT/IC3/OLP2008_ChagnouxHernandezAussenac.pdf
ftp://ftp.irit.fr/IRIT/IC3/OLP2008_ChagnouxHernandezAussenac.pdf
http://citeseer.ist.psu.edu/hearst92automatic.html
http://citeseer.ist.psu.edu/hearst92automatic.html


[30] H. Yang, J. Callan, A metric-based framework for automatic taxonomy
induction, in: Proceedings of the 47th Annual Meeting of the Associ-
ation for Computational Linguistics (ACL2009), Singapore, 2009, pp.
271–279.

[31] R. Girju, A. Badulescu, D. I. Moldovan, Learning semantic constraints
for the automatic discovery of part-whole relations, in: Proceedings
of the Human Language Technology Conference of the North Ameri-
can Chapter of the Association for Computational Linguistics (HLT-
NAACL 2003), Association for Computational Linguistics, Morristown,
NJ, USA, 2003, pp. 1–8.

[32] M. Pennacchiotti, P. Pantel, Ontologizing semantic relations, in: ACL,
The Association for Computer Linguistics, 2006, pp. 793–800.

[33] P. Pantel, M. Pennacchiotti, Automatically harvesting and ontologizing
semantic relations, in: P. Buitelaar, P. Cimiano (Eds.), Proceeding of
the 2008 conference on Ontology Learning and Population: Bridging
the Gap between Text and Knowledge, Vol. 167 of Frontiers in Artificial
Intelligence and Applications, IOS Press, 2008, pp. 171–195.

[34] C. Bizer, J. Lehmann, G. Kobilarov, S. Auer, C. Becker, R. Cyganiak,
S. Hellmann, DBpedia - a crystallization point for the web of data,
Journal of Web Semantics: Science, Services and Agents on the World
Wide Web 7 (3) (2009) 154–165.
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