A Utility Centered Approach for Evaluating and Optimizing Geo-Tagging

Albert Weichselbraun

Vienna University of Economics and Business Department of Information Systems and Operations Augasse 2-6, 1090 Vienna

albert.weichselbraun@wu.ac.at

September 7, 2009

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注 のへで

Agenda

Definition

Motivation

Assign unique locations to resources Standardize evaluation sets

Method

Idea User preferences Evaluation ontology

Demonstration

Outlook & Conclusions

Definition

Geo-tagging of phrases (deterministic)

"identify geographic references in resources and ground them to geographic entities."

Geo-tagging of resources (non-deterministic)

"assign one geographic entity to a resource"

Difficulties

- multiple location references
 - focus algorithms
- correct focus and the impact of incorrect tags often depend

- on the user and
- the use case

Motivation: assign unique locations to resources

Figure: Tivoli Hotels in Madeira.

・ロト・日本・モート モー うへぐ

Motivation: standardize evaluation sets

- ► Clough and Sanderson [1] importance of comparative evaluations → stimuli for research
- ▶ Leidner [2] Geo evaluation data set; influence of gazetteer
 - scope
 - coverage
 - correctness
 - granularity
 - balance and richness
- Turpin and Hersh [3] IR metrics do not necessarily correspond to user performance and satisfaction

Idea

- different people (use case, user) \leftrightarrow different priorities
- classic economic problem
- utility functions map user preferences (p_u), answers (a_i) and solutions (s_i) to a utility score

$$u = f(p_u, a_i, s_i) \tag{1}$$

 ontologies provide context information to support the mapping (e.g., Salzburg is a city in Austria, Madeira is a state of Portugal, ...)

User preferences

- basic weights $f_{eval}(a_i) = \prod_{j=1}^n w_{d_j}$
- more detailed specifications are possible but not necessary

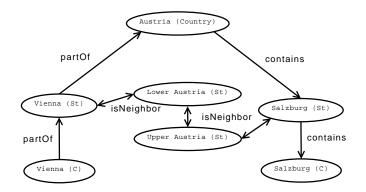


Figure: Example: Utility Scoring.

Evaluation ontology & algorithms

- based on GeoNames; handles GeoNames instance data
- Evaluation metrics:
 - uses the evaluation ontology + instance data
 - translates movements alongside ontological dimensions to weights

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

uses heuristics to handle sparse data

Handling of sparse data

- isNeighor: restricted to instance data on the same scope (e.g. country – country)
- example heuristics for "close matches"

$$\begin{array}{c} at \\ at \\ u_c^h \\ u_c^h \end{array} \begin{array}{c} /National \ Park \ Hohe \ Tauern \\ At \\ u_c^o \end{array} \begin{array}{c} correct \\ detected \\ detected \end{array}$$

$$u_c = u_c^h + u_c^o \tag{2}$$

$$u_c^o = (1 - u_c^h) \cdot f_{eval}^d \tag{3}$$

$$\mathcal{L}_{eval}^{d} = max(0, (1 - \frac{d}{d_e} \prod_{i=1}^{n} w_{di}))$$
(4)

$$d_e = E(d_{random}) = \frac{1}{3}\sqrt{A_{S_l}/\pi}$$
 (5)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Geo-tagger evaluation

				$A \sqsubseteq B \lor$
Comparison	=	$A \sqsupseteq B$	$A \sqsubseteq B$	$A \sqsupseteq B$
OpenCalais vs. Reuters	20 %	72 %	31 %	78 %
geoLyzard vs. Reuters	17 %	62 %	25 %	75 %
OpenCalias vs. geoLyzard	47 %	51 %	48 %	62 %

Table: Evaluation of geo-tags created by OpenCalais and geoLyzard.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

improve the comparability of geo-tagger results

Outlook & Conclusions

Conclusions

- more fine grained notion of correctness
- user preference, evaluation ontologies and heuristics
- application of this approach to geo-taggers
- use to improve the comparability of geo-taggers

Outlook

- create a standardized geo-tagger evaluation set
- implement a test driven development methodology for use case specific geo-taggers

Paul Clough and Mark Sanderson.

A proposal for comparative evaluation of automatic annotation for geo-referenced documents.

In Proceedings of the Workshop on Geographic Information Retrieval at SIGIR 2004, 2004.

Jochen L. Leidner.

An evaluation dataset for the toponym resolution task.

Computers, Environment and Urban Systems, 30:400–417, 2006.

Andrew H. Turpin and Falk Scholer.

User performance versus precision measures for simple search tasks.

In SIGIR '06: Proceedings of the 29th annual international ACM SIGIR conference on Research and development in information retrieval, pages 11–18, New York, NY, USA, 2006. ACM.