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Abstract. This paper introduces hybrid AI models for structured 
mobility prediction in metropolitan areas, focusing on Vienna, to 
guide citizens toward greener transportation options. The AI-CENTIVE 
project explores how AI can identify effective incentives by forecasting 
future trips using a combination of traditional machine learning and mod-
ern deep learning architectures. Trained on a dataset of commuter trips 
from the Ummadum app, the models predict transport mode, time, ori-
gin, destination, distance, and duration. The most accurate predictions 
trigger notifications suggesting sustainable alternatives. The evaluation 
of various hybrid architectures revealed that a graph convolutional net-
work that uses statistical patterns achieved the best performance on the 
analyzed dataset. The presented research contributes to leveraging AI to 
promote sustainable mobility through targeted incentivization. 

Keywords: Structured Prediction · Graph Convolutional Network · 
Transformers · Hybrid AI models · Mobility 

1 Introduction 

Supporting sustainable mobility is a complex challenge, as environmental con-
cerns alone rarely prompt people to change their long-standing travel habits, such 
as using private cars. Mobility decisions are shaped by diverse factors, includ-
ing affordability, convenience (e.g., overcrowded buses discourage use), available 
infrastructure (e.g., bike lanes), individual capabilities (e.g., driving licenses), or 
accessibility (e.g., inclusivity for people with disabilities). 

This work presents findings from the AI-CENTIVE research project, 1, which  
explores how Artificial Intelligence (AI) can identify incentives to guide citizens 
toward greener transportation options, e.g., opting for bikes or public trans-
port instead of private cars for commuting. The focus is on a metropolitan 
1 www.aicentive.eu. 
c The Author(s), under exclusive license to Springer Nature Switzerland AG 2026 
I. Rojas et al. (Eds.): IWANN 2025, LNCS 16008, pp. 628–639, 2026. 
https://doi.org/10.1007/978-3-032-02725-2_49
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area (Vienna) to understand commuting habits within and outside city lim-
its. Our model evaluates hybrid architectures that combine traditional machine 
learning (ML) models with modern deep learning architectures, such as Trans-
formers and graph neural networks. These models are trained to forecast future 
trips based on mode of transport, time, origin, destination, distance, and dura-
tion. The forecasting is done using structured prediction, an ML approach that 
predicts all these independent outputs simultaneously. Tree-based models (e.g., 
XGBoost) [ 23] and LSTMs demonstrated a good balance between performance 
and interpretability [ 4]. For routing problems, such as estimating the time of 
arrival (ETA), graph convolutional networks (GCNs) have also been considered 
[ 9]. Transformers are also increasingly applied to forecasting tasks due to their 
capacity to model complex dependencies [ 20]. Sometimes, it may be necessary 
to combine these architectures to achieve the best results for a particular route 
or user. 

After establishing a baseline for mobility prediction models, we incorporate 
data from a real-world incentivization experiment using Ummadum, a mobile 
app that rewards users for sustainable trips in Austria. By comparing baseline 
predictions with outcomes from incentivized scenarios, we aim to assess the envi-
ronmental benefits of behavioral change and provide practical guidance to poli-
cymakers and mobility providers. This paper focuses on an essential part of this 
process: the workflow for generating user notifications based on predicting their 
upcoming mobility behavior. This uses hybrid models based on Transformers or 
GCNs to create structured predictions for future trips. 

The paper is organized as follows: Sect. 2 summarizes related work, Sect. 3 
describes the data collection method and resulting AI models, whereas Sect. 4 
presents the results from a first user pilot with predictions from our AI model. 
The paper concludes with a brief overview and outlook for future work. 

2 Related Work 

The number of works focused on mobility has increased exponentially since the 
introduction of deep learning architectures. It would be impossible to review all 
of them. Therefore, the following section highlights some well-known surveys and 
research articles to help us understand how to approach this field. 

Tedjopurnomo et al. [ 19] provide a comprehensive survey on traffic prediction. 
They include datasets and conditions such as input lengths, forecast horizons, 
and model choices like LSTMs or Deep Belief Networks. The paper describes var-
ious prediction targets like traffic flow, speed, and crowd dynamics. The survey 
identifies key challenges, including capturing spatiotemporal patterns, improved 
benchmarking datasets that also encompass rural areas, online learning, and 
adaptability to new tasks. Lim et al. [ 12] investigate time-series forecasting from 
a broader perspective, proposing hybrid approaches to integrate auxiliary fea-
tures. These include both deterministic and probabilistic methods for generat-
ing predictive distributions. For longer sequences, Chen et al. [ 2] extend similar 
strategies. Yin et al. [ 21] propose blending traditional models (e.g., statistical



630 A. M. P. Braşoveanu et al.

models, matrix factorization) with deep learning to improve interpretability and 
enhance representation power. 

Transformer architectures have also been proposed for time series forecasting 
[ 1], leading even to a new class of TS-PTMs (Time-Series Pre-Trained Models) 
[ 14]. Such models are pre-trained on classification or traditional forecasting tasks 
and later fine-tuned on desired target domains to improve the performance of 
downstream tasks (e.g., anomaly detection, route prediction, ETA, time-series 
classification). Large datasets with multiple categories and time series are typi-
cally preferred for pre-training such models. This idea has been further extended 
by applying foundation models to time series, shaping another class of models 
called TSFMs (Time Series Foundation Models) [ 11]. 

In another survey, Jiang et al. [ 9] look at GCNs in traffic forecasting. They 
map various applications, such as road conditions, flow, or regional mobility 
data, and explore graph construction strategies (e.g., road-level, sensor-level) 
and multiple adjacency matrix types. The paper reviews models like graph neu-
ral models.  Rahmani et al.  [  16] go one step further and provide a comprehensive 
review focused on the application of GCNs to all areas of transportation, includ-
ing parking, safety, self-driving vehicles, or even urban planning. Beyond all the 
surveys that can help us identify current trends, the Google Maps GNN pro-
duction model, focused on estimated time of arrival (ETA) [ 3], deserves special 
attention, as the paper provides notes on ablation studies and qualitative anal-
yses on real-world data. Another important note regarding Google should be 
made for their willingness to adapt to ever-changing regulations (e.g., the recent 
move of personal travel histories from their servers to mobile devices). 

Given the importance of understanding why AI models make certain pre-
dictions, explainability is vital for identifying and addressing biases (e.g., from 
imbalanced datasets). Schwalbe and Finzel [ 17] provide an extensive survey that 
reviews more than 50 surveys dedicated to this topic. 

3 Method 

This section describes the method developed to examine the metropolitan Vienna 
mobility dataset, as well as the overall architecture and workflows used to send 
notifications to users. 

3.1 Dataset 

To understand the Vienna metropolitan area, we examined a dataset created by 
Ummadum, a project partner of AI-CENTIVE. The dataset focuses on com-
muter communities who log trips taken in Vienna and its surrounding vil-
lages and cities. This dataset covers daily trips for users registered with the 
Ummadum mobile application. The dataset is updated monthly. Due to the 
application’s growth, around 20,000 new trips are added monthly. The current 
dataset comprises approximately 540,000 data points spanning from April 2022 
to May 2025. The dataset is built around several types of user activities, namely
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walking (WALK), biking (BIKE), public transport (PT), and ridesharing as a 
driver (CAR_DRIVER) or rider (CAR_RIDER). Data about activity status 
is also collected (e.g., STARTED, FINISHED, CANCELLED, etc.). User data 
is anonymised according to the GDPR. The location of each activity is also 
anonymized (e.g., segments were added to origin and destination so that a user’s 
real location cannot be identified). The mapping from latitude/longitude to zip 
codes was made using an API based on OpenStreetMap (OSM) called Nomina-
tim. In cases where coordinates did not point towards a precise location (e.g., 
a clear district), the nearest neighbor method was used. Data about each trip 
(origin and destination are expressed zip codes) and location type (e.g., home or 
office) is included in the dataset. Since one of the main goals of this experiment 
is to understand which incentives lead to choosing more sustainable mobility 
choices for trips, the list of active rewards is included in the data. This covers 
Ummadum Points, which are earned for making sustainable trips and may be 
converted to discounts in participating stores, community type (i.e., the type 
of community that provides the reward (e.g., company, municipality, marketing, 
management), carsharing (i.e., if the activity was rewarded with points for shar-
ing a car trip with other passengers), (use of a) free parking space, or activity 
challenge where users earn additional rewards based on their activity levels. 

3.2 Hybrid Models 

After analyzing the data, we built a series of hybrid models for generating struc-
tured predictions for each trip. Instead of predicting each attribute separately, 
all the attributes are predicted simultaneously. The output contains the activity 
type, the time (date and hour), distance, duration, origin, and destination for 
each trip a user might perform. Structured prediction is an ML approach that 
simultaneously predicts multiple interdependent output variables while preserv-
ing their relationships and constraints. 

While hybrid models are frequently used, they have different meanings in 
various contexts. For example, one can use the term hybrid to describe ensembles 
of lexical and deep learning models for sentiment analysis. Still, one can use the 
same term when combining traditional statistical and deep learning models. On 
a broader level, the term is also used to describe systems that combine symbolic 
(e.g., logic-based) reasoning and subsymbolic (e.g., data-driven) learning. For 
this paper, the term hybrid models combines traditional ML models with modern 
deep learning architectures. Traditional models refers to ML models typically 
used before the advent of deep learning between 2014 and 2016. The rest of this 
section briefly explains the terms we used for our definition. 

Traditional methods described in [ 7] include linear or kernel methods. They 
are often considered to be parametric, interpretable (e.g., precise meanings for 
parameters), low data requirements (e.g., can work with limited samples), white-
box (e.g., behavior and confidence intervals can be established analytically), and 
optimizable by theory. Linear regression or ARIMA (auto-regressive integrated 
Moving Average) models, which are heavily used for time series forecasting [ 8], 
belong to this category. In contrast, deep learning methods [ 6] are non-parametric
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and have low interpretability (e.g., while feature importance can be computed, 
it is often not enough), high data requirements (e.g., they need a lot of sam-
ples), black-box (e.g., behavior and confidence intervals are often messy and 
difficult to be established), and hard to optimize. Methods like decision trees 
or gradient boosting (e.g., XGBoost) [ 7] fall right in the middle between tradi-
tional and deep learning methods, as they are non-parametric, and they have 
medium interpretability (e.g., feature importance available through SHAP or 
similar libraries), medium data requirements, white-box, and somewhat easier 
to generalize. 

In recent years, predictive analytics has increasingly shifted toward leverag-
ing modern deep learning architectures (e.g., Transformers, Graph Neural Net-
works) due to their ability to capture complex, nonlinear patterns and signifi-
cantly improve forecasting accuracy compared to traditional statistical methods. 
Such models are necessary when incorporating features from multiple domains, 
such as mobility, news media, or weather prediction. However, traditional mod-
els (e.g., decision trees or gradient boosting) still perform very well for time 
series forecasting tasks (see [ 18]). Ideally, we wanted the deep learning models 
to capture nonlinear patterns and for the traditional models to interpret the 
results easily. Due to this aspect, we combined traditional and deep learning 
architectures. This idea was proposed as early as 2003, before the advent of deep 
learning architecture, by Zhang’s seminal paper [ 22], and recently reintroduced 
through articles like [ 5] and  [  15] using various types of neural architectures. 

The next paragraphs describe how we analyzed our data and built the appli-
cation workflows. 

3.3 Architecture and Workflows 

After examining the data, we have created several notification workflows linking 
model predictions to user incentives: 

– Classic - includes success notifications acknowledging previous sustainable 
mobility efforts to reward and motivate participants; 

– AI - recommends future sustainable mobility to participants using contextual 
information (e.g., behavior, mobility preferences, location, time) with the goal 
of (re-)activating participants; 

– Weather - recommends future trips according to local weather forecasts. 

We implemented the classic workflow and tested it for several months through 
a pilot with real users. The number of users who started using the application 
more frequently increased, and the overall number of users interested in the 
AI-CENTIVE community with these notifications has also increased. The noti-
fications resulting from this workflow were sent weekly on a single day at the 
same time (e.g., typically Tuesdays at 8:00 a.m.). 

Next, we implemented the weather workflow. Initially, these were not well 
received due to multiple factors. Because Vienna exhibits microclimates, it is 
often difficult to predict the weather in certain districts [ 13]. Additionally, design-
ing sound user notifications and rewards in such conditions was also problematic,
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as it would not have been easy to send such messages to particular users without 
providing a lot of background information about how to interpret the notifica-
tions themselves. This was not ideal for us, as we wanted a simple system that 
everyone could easily understand and that followed the current European legisla-
tion (e.g., GDPR, the AI Act). We have ultimately decided to send notifications 
only for severe weather alerts. 

In parallel, we have also implemented the AI recommendations. The workflow 
idea was to create an AI model for structured prediction (e.g., instead of simply 
predicting ETA or distance, we forecast multiple attributes simultaneously) and 
select the best predictions generated by this model to send daily notifications to 
users based on their habits. After an initial testing stage, we decided to reduce 
the number of notifications to several per week (e.g., two or three), as daily 
notifications were not well-received (e.g., faced with multiple notifications per 
day, users were more likely to consider them spam). Eventually, the workflow 
was tested with real users and was well-received. 

The overall architecture, which combines these workflows, is presented in 
Fig. 1. The dataset and the three workflows are the centerpieces. Today, notifi-
cations are sent daily at various hours based on the predictions. Even the classic 
success notifications are spread throughout the week. This is achieved with the 
help of a mixer component that splits all notifications by day and user based 
on simple business logic (e.g., no more than one notification per day for each 
user and no more than three notifications per week for each user). A task sched-
uler is then used to send notifications directly to the users via the Ummadum 
notification API. All workflows are run once per week on Monday morning, and 
notifications are then scheduled for the remainder of the week. 

Fig. 1. Flow diagram of the notification architecture components. 

Keeping everything simple and practical has enabled us to implement these 
workflows relatively quickly. However, selecting good hybrid models took longer, 
as the evaluation process was difficult, as seen in the next section. 

4 Evaluation 

The evaluation section describes the hybrid models we examined, the selection 
of the best models, and the evaluation strategies.
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4.1 Models 

We have examined multiple models based on Transformers and GCNs. The best 
model was selected based on the best combined loss, MSE, and RMSE test 
scores. The loss function combines normalized cross-entropy losses for categorical 
attributes and normalized MSE for numeric attributes, ensuring balanced multi-
objective optimization across all prediction tasks. 

The Transformer. Base model is a multi-output structured prediction base-
line that forecasts multiple targets simultaneously. The model processes various 
feature types (categorical, numerical, and temporal) through an initial projec-
tion layer, followed by self-attention mechanisms that help capture complex rela-
tionships between features. Input data undergoes comprehensive preprocessing, 
including categorical encoding, feature scaling, and temporal feature extraction, 
before being fed through the model’s transformer layers. The model processes 
sequence data through transformer layers and aggregates information using sim-
ple global average pooling before sending it to specialized prediction heads. 
These target-specific heads allow the model to handle multiple prediction tasks 
simultaneously, including regression (distance, duration), classification (activity 
types, locations), and timestamp forecasting. During training, the model opti-
mizes multiple loss functions concurrently (MSE for regression, cross-entropy 
for classification) and employs early stopping to prevent overfitting. The model 
handles different prediction types with specialized output formats: regression val-
ues are exponentiated after prediction (reversing log transforms), classification 
outputs are converted to most-likely class labels, and datetime predictions are 
transformed back into proper timestamp format. The other Transformer models 
build upon this model and typically combine two architectures (e.g., a classic 
model and a deep learning model). 

The hybrid Transformer + XGBoost model (T.XGB) implements structured 
prediction by generating multiple trip attributes simultaneously through a multi-
head architecture. The transformer backbone processes sequential trip data to 
extract shared representations, which feed into specialized output heads for dif-
ferent attribute groups (location, time, activity, etc.) while producing global 
embeddings for XGBoost enhancement. These embeddings are combined with 
user-specific features to train dedicated XGBoost models for each prediction tar-
get, improving individual attribute forecasting while maintaining inter-attribute 
relationships. The model integrates these predictions, handling normalization 
conversions and ensuring proper generation of categorical attributes (activity 
types, postal codes) and numeric values (distance, duration). This architecture 
captures the dependencies between trip attributes through shared representa-
tions, enabling holistic trip prediction rather than treating each attribute as an 
independent target. 

The hybrid Transformer + ARIMA (T.ARIMA) model processes input fea-
tures through Transformer encoder layers, extracting shared representations that 
feed into specialized output heads for each attribute type—classification heads 
for categorical variables and regression heads for numeric ones. Temporal pat-
terns are captured using the neural network’s sequence modeling capabilities
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and dedicated ARIMA models for each attribute (e.g., activity type, distance, 
duration, etc.), with the final outputs representing a weighted blend (75% Trans-
former, 25% ARIMA). Training employs AdamW optimization with early stop-
ping and learning rate scheduling. At the same time, predictions undergo careful 
post-processing to ensure valid outputs, including appropriately handling postal 
codes and activity types based on historical patterns. 

The GCN.Base model processes trip data using a single graph convolutional 
layer that captures basic spatial relationships combined with simple user embed-
dings and temporal features. This baseline model employs a shared hidden rep-
resentation followed by specialized prediction heads for each attribute, including 
separate components for hour and day prediction to generate start times accu-
rately. It trains using a weighted loss function that balances the importance of 
each prediction component, with additional emphasis placed on temporal pre-
dictions. This model focuses on the core structured prediction task with minimal 
computational overhead. 

The GCN.XAI model builds upon the GCN.Base model and adds a classic 
statistical model (user histories) and an explainable AI component. The archi-
tecture consists of multiple graph convolutional layers followed by global mean 
pooling, with dedicated embedding layers for users and activity types, incorpo-
rating temporal features through normalized time representations. The model’s 
final linear layer outputs all the target attributes through a unified representation 
that captures their correlation. Training incorporates enhanced regularization 
techniques (L2 regularization for embeddings, dropout, and gradient clipping) 
with an AdamW optimizer and learning rate scheduling based on validation per-
formance. A distinctive feature is the explanation framework that computes con-
fidence scores for predictions based on historical user patterns, analyzing route 
frequencies, time patterns, and activity distributions. Trip predictions incorpo-
rate personalized commuting behaviors, differentiating between weekday pat-
terns (with distinct morning/evening commutes) and weekend travel, with each 
prediction accompanied by an explanation detailing the rationale behind route 
selection and estimated confidence scores. The architecture considers numeri-
cal stability through standardization and outlier handling, while early stopping 
based on RMSE performance prevents overfitting. 

4.2 Discussion 

As already explained in Sect. 3.1, the dataset includes user and trip identification, 
activity details (e.g., transport mode, status), geolocation tagging (e.g., times-
tamp, distance, duration), incentivization system (e.g., communities, points, 
challenges, points budgets), and notification data (e.g., time, type). 

For evaluation purposes, the training dataset contained several weeks of data 
(January–March 15th, 2024), the test dataset focused on the following two weeks. 
After several experiments, we decided that 10–12 weeks of training was ideal for 
our use case for multiple reasons, including the duration of training and trip 
recency. The average training time for 50 epochs was around 10 min, regardless
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of the model. This smaller evaluation dataset was needed due to the restric-
tion of creating notifications in near real time (e.g., several minutes to run the 
workflows) using the latest data. The code ran on L4 and A100 GPUs. 

Table 1. Comparison of Model Performance (values rounded to three decimals). T 
stands for Transformers. GCN abbreviates Graph Convolutional Networks. Best model 
highlighted in bold. 

Model Train Loss Test Loss Train MSE Test MSE Train RMSE Test RMSE 
T.Base 0.000 0.000 0.000 0.000 0.017 0.019 
T.XGB 0.011 0.009 0.034 0.186 0.027 0.151 
T.ARIMA 0.560 0.619 0.560 0.530 0.619 0.560 
GCN.Base 0.000 0.000 0.000 0.015 0.000 0.019 
GCN.XAI 0.000 0.000 0.000 0.011 0.000 0.010 

Table 2. Generalization gap (Test - Train) for model performance (values rounded to 
three decimals). Best model highlighted in bold. 

Model Loss Gap MSE Gap RMSE Gap 
T.Base 0.000 0.000 0.002 
T.XGB −0.002 0.152 0.124 
T.ARIMA 0.059 −0.030 −0.059 
GCN.Base 0.000 0.015 0.019 
GCN.XAI 0.000 0.011 0.010 

Table 1 presents the evaluation results. The classic metrics (normalized loss, 
MSE, RMSE) have been adapted for structured prediction. This was done via 
per-batch aggregation (e.g., batch_loss computes the average loss across all fields 
from a single batch of data) and per-epoch aggregation (e.g., by tracking how 
metrics evolve over the entire epoch). GCN models yield the best results for the 
smaller period discussed in this article and for any other periods from the larger 
dataset. The best model was selected based on the combined metrics. 

Table 2 showcases the generalization gap [ 10] for the models. Defined as 
the difference between test and training performance metrics, it tracks how the 
model’s performance degrades when exposed to unseen test data. A larger pos-
itive gap indicates overfitting, where the model has memorized training data 
patterns. This is a fundamental measure of model generalization ability, with 
smaller gaps indicating more robust models that perform consistently across 
different datasets.
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The best model (GCN.XAI) includes a more sophisticated prediction app-
roach that differentiates between weekday and weekend travel patterns and incor-
porates user-specific commuting behaviors. Temporal features are added as an 
input to the forward method (e.g., hour of day and day of week) and used in 
prediction. This model also employs more advanced regularization techniques, 
including dropout layers, L2 regularization specifically for embeddings, learning 
rate regularization, and explicit gradient clipping, making it more robust against 
overfitting. Similarly to the concept of explainability through verbalization, the 
predictions are explained based on the user’s history. While the overall scores are 
second best, this model predicts the top scores for users with high confidence. 
Therefore, it was considered better only to send users the best predictions. 

Route handling is the most critical difference between the GCN models. The 
GCN.Base model relies on randomized selection from known postal codes with-
out considering route plausibility for new routes. The GCN.XAI model imple-
ments a second confidence metric specifically tailored for unseen routes. This 
metric considers: i) the user’s pattern stability (how consistent their travel pat-
terns are); ii) location familiarity (if the user has been to either the origin or 
destination before); iii) activity type; and iv) the time pattern reliability. Due 
to this aspect, this model can still leverage partial knowledge about new routes 
(e.g., past trips to the same destination from other starting points) to generate 
and assess predictions. At the time of writing, the GCN.XAI model is the main 
model used in the second AI-CENTIVE pilot focused on AI notifications. We 
will collect the study results during the Summer of 2025 and analyze the effects 
on sustainable mobility incentivization to improve the results further. 

5 Conclusion 

This paper focused on building hybrid models for structured mobility prediction 
in metropolitan areas like Vienna. The design space of hybrid models, however, 
is infinite. Therefore, the solutions we explored represent only a tiny fraction 
of what is possible to build when combining various models. We have focused 
on combining neural and classic models, as there can be a tendency to overlook 
traditional models’ benefits when newer technologies emerge. Some statistics 
can go a long way and should not be dismissed simply because we have better 
models. Sometimes, better models come with additional problems like longer 
training times, more complex infrastructure, and difficult debugging. Combining 
a simple neural model with a classic model allows us to sidestep these kinds of 
issues and craft simple solutions that can help in near-real-time scenarios. 

In upcoming work, we will integrate emissions data from the mobility CO2 

calculator of the University of Natural Resources and Life Sciences (BOKU) in 
Vienna to quantify the environmental impact of different incentivisation strate-
gies. This will offer a concrete measure of emission reductions achieved through 
shifts in travel behaviour. We also plan to integrate weather features directly 
into the hybrid models to create more accurate predictions, and to evaluate total 
transportation emissions to understand mobility-related environmental costs.
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Equally important is fostering a growing community committed to low-
impact mobility choices. Tracking the rise in adopting sustainable transport 
options will help assess behavioral change. Additionally, we aim to address urban 
problem zones—areas lacking parking or reliable transport within walking dis-
tance. Measuring reductions in such zones will demonstrate improvements in 
accessibility and urban livability. These new metrics will deepen our predictive 
models and contribute to an inclusive, data-informed approach to sustainable 
transport and urban development. Through AI-CENTIVE, we hope to support 
citizens and stakeholders in building more adaptive, fair, and ecologically sound 
cities. 

Acknowledgments. This work was partially funded through the AI-CENTIVE 
research project (BMK/FFG grant agreement number 892238). Special thanks to Gün-
ther Charwat and Egon Prünster from Ummadum for designing the sustainable mobil-
ity dataset and the notification messages. 

Disclosure of Interests. The authors have no competing interests to declare relevant 
to this article’s content. 

References 

1. Ahmed, S., Nielsen, I.E., Tripathi, A., Siddiqui, S., Ramachandran, R.P., Rasool, 
G.: Transformers in time-series analysis: a tutorial. Circuits Syst. Signal Process. 
42(12), 7433–7466 (2023). https://doi.org/10.1007/S00034-023-02454-8 

2. Chen, Z., Ma, M., Li, T., Wang, H., Li, C.: Long sequence time-series forecasting 
with deep learning: a survey. Inf. Fusion 97, 101819 (2023). https://doi.org/10. 
1016/J.INFFUS.2023.101819 

3. Derrow-Pinion, A., et al.: ETA prediction with graph neural networks in Google 
Maps. In: Demartini, G., Zuccon, G., Culpepper, J.S., Huang, Z., Tong, H. (eds.) 
CIKM ’21: The 30th ACM International Conference on Information and Knowledge 
Management, Virtual Event, Queensland, Australia, November 1 - 5, 2021, pp. 
3767–3776. ACM (2021). https://doi.org/10.1145/3459637.3481916 

4. Dunn, J., Mingardi, L., Zhuo, Y.D.: Comparing interpretability and explainability 
for feature selection. CoRR abs/2105.05328 (2021). https://arxiv.org/abs/2105. 
05328 

5. Gasparin, A., Lukovic, S., Alippi, C.: Deep learning for time series forecasting: the 
electric load case. CAAI Trans. Intell. Technol. 7(1), 1–25 (2022). https://doi.org/ 
10.1049/cit2.12060 

6. Goodfellow, I., Bengio, Y., Courville, A., Bengio, Y.: Deep Learning, vol. 1. MIT 
Press, Cambridge (2016). https://www.deeplearningbook.org/ 

7. Hastie, T., Tibshirani, R., Friedman, J.H.: The Elements of Statistical Learning: 
Data Mining, Inference, and Prediction, Second Edition. Springer Series in Statis-
tics, Springer (2009). https://doi.org/10.1007/978-0-387-84858-7 

8. Hyndman, R.J., Athanasopoulos, G.: Forecasting: Principles and Practice. OTexts, 
3rd edn. (2021). https://otexts.com/fpp3/ 

9. Jiang, W., Luo, J.: Graph neural network for traffic forecasting: a survey. Expert 
Syst. Appl. 207, 117921 (2022). https://doi.org/10.1016/J.ESWA.2022.117921



Hybrid AI Models for Structured Mobility Prediction in Metropolitan Areas 639

10. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-
batch training for deep learning: generalization gap and sharp minima. In: 5th 
International Conference on Learning Representations, ICLR 2017, Toulon, France, 
April 24-26, 2017, Conference Track Proceedings. OpenReview.net (2017). https:// 
openreview.net/forum?id=H1oyRlYgg 

11. Liang, Y., et al.: Foundation models for time series analysis: a tutorial and survey. 
In: Baeza-Yates, R., Bonchi, F. (eds.) Proceedings of the 30th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining, KDD 2024, Barcelona, 
Spain, August 25-29, 2024, pp. 6555–6565. ACM (2024). https://doi.org/10.1145/ 
3637528.3671451 

12. Lim, B., Zohren, S.: Time series forecasting with deep learning: a survey. CoRR 
abs/2004.13408 (2020). https://arxiv.org/abs/2004.13408 

13. Loibl, W., Vuckovic, M., Etminan, G., Ratheiser, M., Tschannett, S., Österreicher, 
D.: Effects of densification on urban microclimate — a case study for the city of 
vienna. Atmosphere 12(4) (2021). https://doi.org/10.3390/atmos12040511 

14. Ma, Q., et al.: A survey on time-series pre-trained models. IEEE Trans. 
Knowl. Data Eng. 36(12), 7536–7555 (2024). https://doi.org/10.1109/TKDE.2024. 
3475809 

15. Mathonsi, T., van Zyl, T.L.: A statistics and deep learning hybrid method for 
multivariate time series forecasting and mortality modeling. Forecasting 4(1), 1– 
25 (2021). https://doi.org/10.3390/forecast4010001 

16. Rahmani, S., Baghbani, A., Bouguila, N., Patterson, Z.: Graph neural networks 
for intelligent transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 
24(8), 8846–8885 (2023). https://doi.org/10.1109/TITS.2023.3257759 

17. Schwalbe, G., Finzel, B.: A comprehensive taxonomy for explainable artificial intel-
ligence: a systematic survey of surveys on methods and concepts. Data Min. Knowl. 
Discov. 38(5), 3043–3101 (2024). https://doi.org/10.1007/S10618-022-00867-8 

18. Taylor, S.J., Letham, B.: Forecasting at scale. Am. Stat. 72(1), 37–45 (2018). 
https://doi.org/10.1080/00031305.2017.1380080 

19. Tedjopurnomo, D.A., Bao, Z., Zheng, B., Choudhury, F.M., Qin, A.K.: A survey on 
modern deep neural network for traffic prediction: trends, methods and challenges. 
IEEE Trans. Knowl. Data Eng. 34(4), 1544–1561 (2022). https://doi.org/10.1109/ 
TKDE.2020.3001195 

20. Wen, Q., et al.: Transformers in time series: a survey. In: Proceedings of the Thirty-
Second International Joint Conference on Artificial Intelligence, IJCAI 2023, 19th-
25th August 2023, Macao, SAR, China, pp. 6778–6786. ijcai.org (2023). https:// 
doi.org/10.24963/IJCAI.2023/759 

21. Yin, X., Wu, G., Wei, J., Shen, Y., Qi, H., Yin, B.: A comprehensive survey on traf-
fic prediction. CoRR abs/2004.08555 (2020). https://arxiv.org/abs/2004.08555 

22. Zhang, G.P.: Time series forecasting using a Hybrid ARIMA and neural net-
work model. Neurocomputing 50, 159–175 (2003). https://doi.org/10.1016/S0925-
2312(01)00702-0 

23. Zhu, L., Shu, S., Zou, L.: XGBoost-based travel time prediction between bus sta-
tions and analysis of influencing factors. Wirel. Commun. Mob. Comput. 2022(1), 
3504704 (2022). https://doi.org/10.1155/2022/3504704


