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Abstract—This paper explores the current landscape of visu-
alizing large language models (LLMs). The main objective was
threefold. Firstly, we investigate how we can visualize LLM-
specific techniques such as prompt engineering, instruction tun-
ing, or guidance. Secondly, LLM causality, interpretability, and
explainability are examined through visualization. And finally, we
showcase the role of visualization in illuminating the integration
of multiple modalities. We are interested in discovering the
papers that present visualization systems instead of those that use
visualization to showcase a part of their work. Our survey aims
to synthesize the state-of-the-art in LLM visualization, offering
a compact resource for exploring future research avenues.

Index Terms—Large Language Models, Prompt Engineering,
Visualization of Neural Networks, Natural Language Processing
(NLP), Explainable AI (XAI)

I. INTRODUCTION

LLMs appeared as a natural extension of the classic lan-
guage models and dominated the news cycle during the last
two years. The fast-paced development was reminiscent of the
early days of the Internet, but it swiftly impacted people’s
lives, especially in academia and industry. It is rare for a
new technology to trigger such quick reactions. The gold rush
that followed to develop more AI applications should not be
surprising. Visualization happens to be at the core of these
applications in many cases. It can take the form of a simple
old-fashioned chat, a map, or a dashboard, and if needed, it
can help us incorporate natural language or other modalities.
Due to its unifying role, visualization helps us navigate the
new AI world.

The fast adoption of AI legislation in the European Union
and other parts of the world suggests that the current AI
wave might continue longer than the previous waves. However,
recent studies explain that developing new AI systems is
a balancing act, as it is rather difficult to assess if they
are trustworthy and if the associated risks are acceptable,
regardless of the number of scenarios examined [1]. Increasing
safety, transparency and accountability is now one of the
most important goals when publishing new LLMs, as the EU
directive requires risk assessment, low energy consumption,
data governance policies (e.g., assessment of bias and fairness,
privacy), use of public benchmarks, extensive documentation,
and increased security. All the operations need to be per-

formed under human supervision. However, due to their high
dimensionality, large training datasets, and complex reasoning
strategies, it can often be difficult to discover which parts of an
LLM led to a specific decision. Highlighting the information
pathways between various components is one of the main
functions of LLM visualizations.

The paper is organized as follows: Section II presents the
motivation and the methodology of this survey; Section III
showcases the various classes of LLM visualizations, the main
topics, and visualization types; Section IV presents a brief
discussion of these classes. The paper ends with some thoughts
about the future of LLM visualizations.

II. BACKGROUND AND METHODOLOGY

The current generation of language models started with
the release of the Transformer [2] architecture. A few years
later, in 2020, the GPT-3 [3] architecture that builds on the
Transformer opened the way for ChatGPT. Due to this aspect,
we have selected 2020 as the starting year for our survey.
Papers published before 2020 are included in the bibliography
only if they are historically significant for language models or
information visualization.

While large language models can be considered a rather
new development, there are many papers about them and
related topics. For example, a search after large language
models on DBLP reports 5,489 articles, whereas searches
for the abbreviation LLM report 1,918 articles. Searches for
connected topics return significantly less results (e.g., prompt
engineering search returns 120, instruction tuning returns 229,
and retrieval augmented generation returns 116), but need to
be considered. However: i) such searches only include paper
titles; and ii) DBLP mostly covers computer science articles.
If we consider other domains than computer science, the total
number of papers will likely double (e.g., at least 14,000). If
we also consider the content of the papers, then the number
of papers would double at least once more, leading us to an
approximate number of around 28,000. However, the number
of publications is increasing fast. Due to this aspect, we have
considered restrictions for including papers in this survey.

We started collecting data with well-known academic search
engines like Google Scholar and DBLP. These were used to



identify the big topics and outlets in which LLM visualization
papers were published. We have then moved on to the portals
of the big publishing houses (e.g., SpringerNature, ACL,
IEEE, ACM, Elsevier, Wiley, MDPI) to find more similar
publications. While many recent articles are published directly
on arXiv, we have double-checked if more recent versions
were published in well-known conferences and journals. As
opposed to scientific ranking engines like Clarivate’s Web of
Science, which helps find high-impact articles, arXiv does
offer a good overview of recent research [4].

The factors that were taken into account for selecting a
work include: i) the significance and relevance of the paper in
connection to the major topics we identified; ii) open access
(if the paper is publicly available); iii) the availability of
the source code on well-known open-source repositories (e.g.,
GitHub); iv) the awareness created through the promotion on
various media channels (e.g., LinkedIn, X/Twitter).

We decided to include only papers focused specifically
on visualization systems (e.g., dashboards mainly focused on
LLM visualization workflows) and visualization methods (e.g.,
new visualizations). For our purposes, a visualization system is
considered to be a software system that leverages the principles
of the grammar of graphics [5] for intuitive data exploration,
analysis, communication or report generation. The well-known
grammar of graphics provides a high-level framework for
constructing visualizations by decomposing graphs into their
basic components.

Even after implementing these restrictions, we discovered
that the number of papers for some topics (e.g., prompt
engineering, text-to-image generation) was high. In such cases,
we have selected only the papers that proposed something
novel or were considered important for one of the selected
topics. We have generally avoided dataset papers, except if
they were also linked to a visualization interface.

This paper mostly focuses on visualizations published in sci-
entific conferences and journals during the described interval,
as opposed to commercial tools. In rare cases, we might also
mention tools focused on visualizing foundational models like
BERT or RoBERTa instead of LLMs. We have only mentioned
such tools or techniques when the articles were among the first
to open a particular research avenue.

III. VISUALIZING LARGE LANGUAGE MODELS

We have decided to focus the core section of our paper
on the following domains: i) LLM mechanisms cover meth-
ods like prompt engineering, instruction tuning, guidance; ii)
causality covers causal relation extraction and causal infer-
ence; iii) explainable AI (XAI) covers interpretability and
explainability; iv) LLM evaluation covers the new domain of
using visualization to evaluate LLMs; v) covers retrieval aug-
mented generation (RAG), code generation and applications
that use multiple modalities. Each subsection also includes
references to various surveys that cover the respective domain.
These references should give casual readers a good starting
point towards accumulating more study material about a cer-
tain domain. For a general LLM survey, the reader is invited to

consult [6]. A brief survey from Braşoveanu and Andonie [7]
covers visualization of foundation models. Chatbot interfaces
are also not covered by this survey, as there is already a survey
that covers them [8].

A. LLM Mechanisms

The success of Transformers for a wide variety of tasks led
to the development of a set of visualizations focused on their
inner mechanisms like embeddings, attention heads or neuron
activation [7]. Similarly, a large LLM visualisation category
focuses on specific mechanisms like prompting or instruction
tuning.

Prompt engineering methods create input queries or instruc-
tions that guide the model towards generating the desired
output. While prompts were a common technique used in a
variety of domains from creative writing to psychology and
management, even before the first LLMs were developed,
they have only recently started to be widely used together
with techniques like one-shot and few-shot learning [3]. For
multimodal use cases, visual prompts can also provide cues
about what kind of images or videos we want to generate.
When prompts are directed towards a specific output (e.g.,
prompts used to guide an LLM towards producing brief
abstractive summaries), the process is called guiding [9].
Sometimes, the term guidance is also used more generally,
for example, when we want to point towards the strategies for
directing model output. Instruction tuning refers to fine-tuning
LLMs on diverse instructions to improve their generalization
capabilities.

An overview of the most essential visualization systems that
belong to this category is presented in Table I. Although some
of these mechanisms are rather new, some surveys are already
available for prompt engineering [10], instruction tuning [11],
visual instruction tuning [12].

The main idea in exploring prompt engineering is to track
different variants of the same prompt to observe which one
leads to the best results [13]. Prompt variation is typically rep-
resented through a deck of cards, shopping carts, or template
cards. Each prompt is represented through a card, and various
stylistic elements (e.g., colour highlights) or statistics are
added to identify the best-performing prompt quickly. Tools
like Promptaid [16] go a step further and explore topics like
perturbation and testing. Besides the cards, image embeddings
are also quite common if such an interface is designed for
exploring variation in text-to-image generation [16].

Many papers are dedicated to creating new reasoning strate-
gies based on prompts. Chain-of-Thought (CoT) reasoning
[23], the originator of this trend, was a simple strategy for step-
by-step problem-solving. Since it was a sequential strategy,
it was followed by parallel strategies (e.g., Tree-of-Thought),
graph strategies (e.g., Graph-of-Thought), and various other
multimodal strategies. The most effective visualization from
this category is probably the simple code block highlighting
produced through the Chain of Code strategy [18]. The basic
idea is that a strategy based on writing code can easily out-
perform CoT. The benchmarking visualizes each code block



TABLE I
VISUALIZING LLM MECHANISMS

Systems and Methods Category Topic Chart Type

PromptIDE [13] and Promptaid
[14]

Prompt engineering Prompt variation, perturbation and
testing

Control panel; scatter plot;
template cards; shopping cart;

perturbation plots; confusion matrix
PromptMagician [15] and

PromptTHis [16]
Prompt engineering Prompt variation for text-to-image

(PrompTHis)
Control panel; image variant graph;

colored tables; graphs ; image
embeddings; hierarchical clustering

ChartGPT [17] Instruction tuning Chart dataset generation with
instruction tuning

Line chart; stacked bar chart; pie
chart

CoC [18] Prompting strategy Chain of Code Code block highlighting; bar
charts; line charts

VPT [19] and Color-based PT[20] Visual prompt tuning Color-based prompt tuning t-SNE; Strategy visualization;
Thumbnails; fill-in-the-blank

LLaVA [21] Visual instruction tuning Large Language and Vision
Assistant

Dashboard; bar charts; text
heatmaps

DiffusionDB [22] Prompt benchmarking Prompt database for text-to-image
models

Interactive circle packing
(clustering); contour plots;

thumbnails

with a different colour depending on the used evaluator (e.g.,
language model versus Python evaluator).

Visual instruction tuning is especially popular for designing
multimodal LLMs. While in many cases, the papers refer
to the LLMs rather than the visualizations, some papers
are accompanied by demos. LLaVA’s interface [21] is rather
simple (e.g., a dashboard which contains video thumbnails, an
upload area, and text heatmaps), and even though its demo is
often offline, it is still widely copied.

B. Causality

The advent of LLMs has also led to a new trend of causal
LLMs. Some of the articles included in Table II can also be
included in this trend, especially [24]. Many articles showcase
questionnaires through which people are asked about their
opinions on the LLM responses.

Most modern articles on causality build on Judea Pearl’s
theoretical foundation (e.g., [38]). More recently, new ideas
about causality started to develop. One important trend comes
from NLP. A recent survey [39] provides definitions, formal-
ization, and guidelines on using causality within estimation,
prediction, and interpretation frameworks. The paper mainly
focuses on two problems: methods to estimate causal effects
extracted from texts and improving the reliability of NLP
methods using causal formalism. Another trend appeared at the
intersection of IT and biomedical sciences. Andreas Holzinger
and his colleagues [40] focused on multi-modal causal analysis
and developed the concept of causability, proposing that one
of the goals when designing new visualisations should be the
idea that they can be used for causal analysis, similar to how
we design new interfaces to be accessible.

Both causal relation extraction and causal inference are
covered here.

Causal relation extraction is focused on extracting pairs
(cause and effect) from structured or unstructured data. It is
an area that is particularly important for medicine and statis-
tics. The interplay between knowledge graphs and foundation

models or LLMs constitutes the most interesting area in which
causal relation extraction plays an important role. SciKGraph
[26] visualizations allow users to cluster and track the dynamic
evolution of a scientific field through the knowledge stored in
scientific knowledge graphs. The SpEAR model [27] produces
small knowledge graphs linked to the ontologically-grounded
WordNet word senses [41]. The possibility of building etno-
graphic causal models from these concepts distinguishes this
tool. While not a grammar or graphics tool, it is great
for building explainable graphs through simple means like
coloured nodes and connectors.

Event Causality Identification (ECI), the detection of causal
links between events from single sentences (SECI) or across
multiple sentences (DECI), is discussed in the ERGO paper
[25]. The relations are visualized with solid lines, whereas
coreference is presented with interrupted arcs. This method
can also be used for LLMs, even though the paper that
introduced them mostly focuses on foundation models (e.g.,
Graph Transformers).

Causal inference determines whether there is a causal
relationship between two variables. Casual inference is one
of the core functionalities of LLMs. Due to this, the field
has exploded since the launch of ChatGPT. Counterfactuals,
hypothetical scenarios through which to carefully examine
what would happen if a causal relationship did not exist, are
one of the most common tools used in causal inference. LLM
Analyzer [29] uses interactive tables and small visualizations
to analyze counterfactuals.

Almost all articles summarised in Table II were published
last year and are still only present in arXiv, suggesting that the
field is growing rapidly. Most of these articles currently focus
on causal graphs, text heatmaps and classic visualisations (e.g.,
bar charts, line charts, radar charts). Some of the articles
deserve a special mention, in particular: (i) the work on causal
geospatial reasoning [37], as it includes the largest number of
visualisations; and (ii) the work on evaluating the security of
LLMs using causal analysis [34], as it showcases new types



TABLE II
VISUALIZING CAUSALITY.

Systems and Methods Category Topic Chart Type

ERGO [25] Causal relation extraction Event causality identification Arcs between causes and effects
SciKGraph [26] Causal relation extraction Clustering of scientific knowledge

fields
Clusters relation graph; cluster

comparison; network visualizations
SpEAR [27] Causal relation extraction Knowledge graph visualization Colored graph traversals with

nodes and relations
PolyJuice [28] and LLM Analyzer

[29]
Causal inference Counterfactual generation Textual heatmaps; bar charts; error

charts; dashboard; interactive tables
Study by Kiciman et al. [30] Causal inference Probing Causal Reasoning Text heatmaps

ILS-CLS [31] and study by Long
et al. [32]

Causal inference Causal discovery Small multiples; bar charts with
error bars; causal graphs

CaCo-CoT [33] Causal inference Faithful knowledge reasoning Text heatmaps
Casper [34] Causal inference Causal analysis for evaluating

security
Bar charts; line charts; causal

effect charts; scatter plots
MoCa [35] Causal inference Alignment between humans -

LLMs
Text heatmaps; radar chart

CaRing [36] Neuro-symbolic AI Neuro-symbolic causal integration Causal graphs
Study by Chen et al. [37] Causal Inference Causal geo-spatial reasoning Heatmaps; geomaps; line charts;

bar charts; histograms;

Fig. 1. LLM Analyzer’s tabular interface for analyzing counterfactuals.
Reproduced from [29].

of visualisations, including one that illustrates the concept of
tracing causal effects within LLMs (e.g., on normal generation,
single layer and single neurons).

Causal inference is essential for the problem of alignment
between humans and machines. Two articles deserve to be
mentioned here: one about alignment on moral and causal task
[35] and the second on neuro-symbolic AI [36].

C. Explainable AI

As already mentioned in the introduction, the introduction
of the EU’s AI Act has turned LLM explainability into one
of the most important topics in LLM research, as all LLM
decisions need to be accompanied by an explanation. Two
large-scale surveys on the topic of LLM explainability are
available: one offers an overview of the topic in[42], and the
second is focused on the issue of LLM trustworthiness [43].

Some of the models discussed in the previous subsection can
also be integrated into this subsection. Still, due to causality
playing a major role in their development, they were placed in

the respective subsection. Similar judgments were made about
models that appear in the following two subsections.

Cito et al. [54] discuss using counterfactual models to
explain model predictions. The visualisations are focused on
changes in code and testing.

Natural language to visualization is the trend closest to the
original idea of the grammar of graphics, as it allows us to
generate various visualizations based on a specification. A
recent survey about the trend is available in Shen et al. [55],
whereas some general ideas about these types of visualization
generation environments are described in Shen et al. [56]. Two
interesting tools perform the opposite operations: NL2VIS
generates visualizations from prompts based on Vega-Lite,
whereas VL2NL generates visualization specifications for the
Vega-Lite format. Vega [57], or Vega-Lite [58] are libraries
designed by Jeffrey Heer’s group for automated visualization
generation. The NLDV toolkit [49] belongs to this trend and
provides interactive guidelines for generating specifications
for visualisations from natural language queries. The paper
describes a Python package that takes a table as an input
and returns a list of Vega-Lite visualisation specifications
as a JSON document. Vega-Lite is an interactive graphics
grammar built under the supervision of Jeffrey Heer, one of
the creators of D3 visualisation library [59]. The NLDV toolkit
is particularly impressive, as it parses queries and performs
implicit and explicit attribute inference (e.g., inference through
both attribute names and values), explicit and implicit task
inference, and visualisation generation.

The Anthropic team has been constantly publishing founda-
tional work on mechanistic interpretability. The recent work on
LLM feature activation [47] is included here as it showcases
how to use visualization to identify and correct LLM features
related to bias, deception, manipulation or even criminal
content.

Other similar tools that can be categorized under visu-
alization recommendation include Chat2VIS [53] which is



TABLE III
VISUALIZING XAI

Systems and Methods Category Topic Chart Type

FAIR [44] and FedJudge [45] Legal intelligence Legal intelligence and inference Bar charts; t-SNE plots; text
heatmaps

Theory-of-Mind (ToM) [46] Explainability Explaining social reasoning ToM templates; causal graphs; text
heatmaps, error bar charts

LEGO [24] Explainability Agentic causal explanation
generation

Text heatmaps; bar charts

Claude 3 Sonnet [47] Interpretability Extraction of interpretable features Density and conditional distribution
plots; text heatmapts; scatter and

bubble charts; parallel coordinates
Boundless DAS method [48] Interpretability Scaling Alpaca interpretability Token heatmaps; line charts

NL4DV [49] and NL2VIS [50] Natural language to visualization Visualization generation from
natural language

Vega-Lite visualizations; classic
charts

VL2NL [51] Natural language benchmarking Visualization generation from
prompts

Generation of natural language
datasets

LLM4Vis [52] and [53] Visualization recommendation Few-shot prompting for
visualization recommendation

Text heatmaps; classic charts

Fig. 2. Visualizing benchmarking errors -nvBench JSON errors. Reproduced
from [50].

focused on the problem of fine-tuning data visualisations using
ChatGPT and CodeLLama, an instruction-tuned version of
LLama focused on code generation, and LLM4Vis [52] which
is focused on few-shot prompting techniques for ChatGPT.
Visualization recommenders can also be included in the ap-
plications subsection. However, we decided to include them
here since these tools also have built-in interpretability and
explainability, as every recommended visualisation comes with
an explanation of why it was selected in the first place.

D. Visual LLM Evaluation

Traditionally, the evaluation process involved computing
some metrics, analyzing the errors, improving the process, and
repeating it repeatedly until the desired results were reached.
If explainability was required, some feature importance or
hyperparameter charts were added in some cases. However,
LLM evaluations need to consider many factors (e.g., lan-
guage, domain, training data, speed, corectness, etc) and cover
the entire lifecycle of the models, therefore visualizations are
often front and centre when designing LLM evaluation tools.

Two large-scale surveys about this topic are available: [60]
and [61].

We are interested in showcasing a rather new development
related to evaluating LLMs, namely their direct usage in
evaluations and visualizations’ role in exploring this particular
aspect. We are, therefore, interested in cases in which LLMs
are both the evaluated systems and the evaluators.

An early attempt on using visualization for evaluating
language models focused on context-sensitive visualization
methods of the most influential word combinations for a
classifier [68]. It leads to heatmaps that include more relevant
information on the classification and more accurately highlight
the most important words from the input text. The method
uses a dependency parser, a foundational model (BERT),
and the leave-n-out technique. Further papers ([69] and [70])
investigate how to evaluate explanations and visualizations
resulting from NLP models for classification.

Fig. 3. EvalGen annotated LLM NER evaluation interface. Reproduced from
[67]

A major challenge is comparing the performances of dif-
ferent visualizations of LLMs. Accuracy cannot be used to



TABLE IV
VISUAL EVALUATION OF LLMS.

Systems and Methods Category Topic Chart Type

Study by Zhang et al.[62] SQL optimization Text-to-SQL, SQL debugging and
optimization

Scatter plot; word cloud; bar charts

MatPlotAgent [63] Scientific visualization Evaluating Agent-based scientific
visualization

Tabular views; text heatmaps;
matplotlib visualizations

EvaLLM [64] AI-generated visualizations Conceptual evaluation of
AI-generated visualization

Scatter plot; bar charts

Causal Auditor [65] Causal evaluation Augmented LLM causality
evaluation

Causal graphs; causal diagrams
(confounder charts; debate charts)

LLM Comparator [66] Visual evaluation Side by side evaluations Tabular views; visualization
summaries

EvalGen [67] Evaluating Alignment Evaluating LLM-assisted alignment Dashboard; tabular views;
confusion matrix

Fig. 4. Text heatmap for a positive product review from the Amazon Reviews
dataset. Reproduced from [70]

evaluate visualisation quality, but more rigorous criteria are
needed to measure the usefulness of the extracted knowl-
edge for explaining the models. The LLM Comparator [66]
continues a tradition specific to NLP systems, that of side-
by-side comparisons of the annotations produced by different
systems (in our case, LLMs). EvalGen [67] provides annotated
tabular interfaces to evaluate LLM results. Matplotagent eval-
uates agentic visualizations built with the MatPlotLib Python
library [63]. Two other articles ([71] and [64]) are focused on
conceptual evaluations rather than visualization systems.

Perhaps due to the need to compare results, tabular views
and scatter plots are some of the most common visualizations
for dashboards in this category. Additionally, visualization
summaries or matplotlib visualizations are included depending
on the requirements.

E. LLM Applications

The number of applications is rather large, so in this section,
we generally focus on multimedia applications. Some of the
modalities we look at include text, image, video, audio, speech,
sensor data, and sometimes haptics. Applications are usually
focused on dashboards as they provide a unified interface that
seamlessly integrates diverse data sources, facilitating compre-
hensive insights and correlations across different modalities in
a concise and accessible format.

Multimodal LLMs (e.g., [83] and [84]) integrate and process
information from multiple types of data sources, such as text,

images, and sound, to enhance analysis or interaction. In
contrast, cross-modal systems focus on translating or linking
information between different types of data modalities, such
as converting visual data into textual descriptions.

Multimedia systems have a long tradition of using visualiza-
tion for benchmarking, one of the best-known recent systems
used for such tasks being Grad-CAM [85], a system that
generates explanations using gradient-based localization (e.g.,
detect which objects from an image are the most significant
contributors to the model’s prediction). Dashboards are also
typically used for multimodal or cross-modal visualizations.
They provide a unified interface that seamlessly integrates
diverse data sources, facilitating comprehensive insights and
correlations across different modalities in a concise and acces-
sible format. They enable the automated tracking of various
stories, points of view or formats.

Typical interfaces offer easy options for navigating the video
frames for spatio-temporal reasoning, one or multiple text
areas for subtitles or linguistic relation extraction (e.g., see
[86]) or inference, and visualisations (e.g., embeddings [87]).
Visualisations themselves might also include text areas with
highlighted words, and they can be as simple as highlighting
correctly or incorrectly retrieved images [87].

No-code and low-code platforms are a relatively new devel-
opment. JarviX [78] presents an easy interface to optimize and
analyze tabular data. LLMs can also help new programmers
visually generate code, low-code platforms providing work-
flows and colour highlighting whenever needed [79].

Retrieval-Augmented Text Generation (RAG) combines in-
formation retrieval with generative AI techniques like sum-
marization, recommendation, or text generation [88]. Some
recent RAG applications include a tool for recognizing PDF
structure called ChatDoc [80], a traffic prediction application
called RealGen [81] which uses animation and RAG to predict
various traffic-related scenarios, and an application that tracks
large collection of documents in context [82]. RealGen [81]
deserves a special mention here for its use of animation.

These applications offer a preview of what is possible by
integrating visualizations with LLMs. From now on, we expect
interfaces blending multiple modalities and simulators that use
more animation to play a significant role.



TABLE V
LLM APPLICATIONS.

Systems and Methods Category Topic Chart Type

ChartLlama [72] and VizAbility
[73]

Multimodal LLMs Chart generation, accessibility, and
understanding

Classic visualizations (line, bar,
cart, etc.)

HiLM-D [74] Multimodal Autonomous driving Text heatmaps; object recognition
CMCL algorithm [75] Cross-modal Causal Structure and representation

learning
Line charts; weighted matrix;

interventions (medical pictures)
DeVADG [76] Cross-modal Domain generalization via

confounder disentanglement
Causal graphs; bar charts; t-SNE;

videos with text heatmaps
VLCI [77] Cross-modal Visual-linguistic intervention for

generating radiology reports
Medical dashboards; images;
model charts; text heatmaps

JarviX [78] No code or low-code No code tabular data analysis Tabular views; basic charts
LowCodeLLM [79] No code or low-code Low-code visual programming Workflow diagrams; text heatmaps;

block code highlighting
ChatDoc [80] Retrieval-Augmented Generation PDF structure recognition PDF visualization; code editor
RealGen [81] Retrieval-Augmented Generation Traffic control Traffic visualizations (e.g., car

crash prediction)
HINTs [82] Retrieval-Augmented Generation Sense making of large document

collections
Cluster views; heatmaps (document

and chatbot views)

IV. DISCUSSION

The number of papers published about LLMs is rather high
for a new discipline. This is a testament to the rapid impact
of this new research field. On the other hand, many papers
are published directly on arXiv, a well-known preprint server
that does not use the classic peer review process scientific
journals and conferences tend to use. Without arXiv reviews,
it is only possible to evaluate the quality of a paper once it
is accepted by a proper scientific outlet or if the code itself is
also available open-source.

As expected, some classic visualization types are frequently
used (e.g., line or bar charts). NLP visualizations use a
lot of text heatmaps, which might also include arrows to
showcase connections between the words. Exploratory LLM
visualizations (e.g., prompt variation) use the deck of cards
or similar design patterns to present multiple options on the
same chart. Computer vision applications use grids to display
videos or pictures, embeddings to showcase the most important
topics, and text heatmaps for prompts or associated texts.

Due to their relatively recent emergence, the subsections on
LLM mechanics and visual LLM evaluations are rather brief.

On the other hand, the subsection on applications can be
continuously extended as new applications appear every day.
RAG seems to be one of the possible futures of information
retrieval, the other being the agent that provides a single
answer. Low-code or no-code environments are becoming
more popular every day, not only for teaching programming
but also in the industry. Generating quick visualizations is
particularly useful in the industry, as they can always be
reused through statistics, slides, or reports. As the previous
section shows, new visualization paradigms emerge in each
domain. While not all these domains are yet mature enough to
warrant separate surveys, they certainly present opportunities
for further exploration.

V. CONCLUSION

We have selected domains with a lot of potential for future
growth. This does not mean that they are necessarily the ones
that will grow the most, but rather that, given what we have
already seen, there are still many growth areas.

Our decision to focus on systems and methods meant that
many good papers, especially those focused on annotation
tools, datasets, or new models, would not have been included
if visualization had been used as support, and it was not the
paper’s main goal. Our survey should be seen as a starting
point for exploring the topics related to LLM visualization
and not as a comprehensive study.

As it can be seen from our previous sections, we are only
starting to use LLMs and visualizations together. The fact that
most papers were published last year suggests this is a fast-
moving field. New visualization domains appear daily and are
quickly integrated into business workflows.
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