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ABSTRACT: Dynamic topography information landscapes are capabl e of visualizing longitudinal changesin large document
repositories. Resembling tectonic processes in the natural world, dynamic rendering reflects both long-term trends and
short-term fluctuations in such repositories. To visualize the rise and decay of topics, the mapping algorithm elevates and
lowers related sets of concentric contour lines. Acknowledging the growing number of documents to be processed by state-
of-the-art Web intelligence applications, we present a scalable, incremental approach for generating such landscapes. The
processing pipeline includes a number of sequential tasks, from crawling, filtering and pre-processing Web content to
projecting, labeling and rendering the aggregated information. Processing steps central to incremental processing are
found in the projection stage which consists of document clustering, cluster force-directed placement, and fast document
positioning. e introduce two different positioning methods and compare them in an incremental setting using two different
quality measures. The evaluation is performed on a set of approximately 5000 documents taken from the environmental blog
sample of the Media Watch on Climate Change (www.ecoresearch.net/climate), a Web content aggregator about climate
change and related environmental issues that serves static versions of the information landscapes presented in this paper as
part of a multiple coordinated view representation.
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1. Introduction

We are confronted not only with large, but also with continuously changing “big data” repositories. The concept of informa-
tion landscapesisapowerful visual representation based on ageographic map metaphor, which conveystopical relatednessin
large document repositories through spatial proximity in the visualization [28]. Hills represent clusters of topically similar
documents, which are separated by sparsely populated regions represented as valleys or oceans. The height of a hill indicates
the size of the corresponding topical cluster, while its compactness corresponds to the cluster’s topical cohesion. Hills (clus-
ters) are labeled with dominant terms and phrases from the underlying documents to provide orientation to the users. Due to
their static nature, however, information landscapes cannot handle changes in the underlying datasets.
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Dynamic topography information landscapes[40] are visual representations capable of conveying both topical relatedness and
dynamic change. When adocument repository evolves, new documents are added and old documents are removed, resulting in
changesin the overall topical structure. Similarity relations and the position of documentswill change — irrelevant topics may
disappear altogether, while new topics will appear and increase in importance. The topography of dynamic information land-
scapes represents changes and topical shifts in the dataset as tectonic processes — rising and shrinking hills indicate the
emergence and fading of topics, respectively. Hills moving towards or apart from each other indicate topical convergence or
divergence of the corresponding topical clusters. When computing the layout of adynamic information landscape, it iscrucial
that dataset changes are incorporated in the topography incrementally, so that regions not affected by changes will preserve
their shapes and relative positions. Regions may undergo tectonic changes only if the corresponding parts of the dataset were
subject to modification. In thisway userswill be ableto quickly identify changing regions, while retaining orientation through
recognition of stable parts of the topography.

Based on large and quickly evolving text repositories coll ected from public Web sources, this paper presents a scal able method
tointegrate dataset changesincrementally into existing landscape topographies. The proposed method providesthree advantages,
which are not simultaneously present in common dimensionality reduction approaches: (1) scalability with dataset size and
high-dimensionality, (2) support for incremental computation, and (3) the capahility to provide aesthetically appealing layouts,
an important consideration when developing visual user interfaces for dynamic Web applications. Our approach relies on a
processing pipeline composed of text preprocessing, projection, labeling and rendering stages. The central component of the
pipeline is the projection stage, which combines incremental document clustering, incremental force-directed placement of
clusters and, most notably, two alternative approaches to fast document positioning. Document positioning is given particular
attention for two reasons: It iscrucial for the overall performance dueto the large number of documentsto be processed, and it
plays a decisive role for the quality and visual appearance of the layout. The document positioning methods are compared
against each other using two different quality measures: a performance-optimized version of the standard stress-measure, and
acluster-based “Hit Ratio” method. It should be noted that the performance of theincremental algorithmisnot the focus of this
paper, asit was evaluated and compared to a non-incremental algorithm version in aprevious publication [44].

2. Related Work

Information landscapes are commonly used to visualize topical relatednessin large document repositories, for examplein[32],
in[28] and in[2]. Static landscape visualizations, however, cannot convey changes. ThemeRiver [22] isavisual representation
designed to represent changes in topical clusters, but it cannot express relatedness between documents or topical clusters.
Visualization of topical changesthrough information landscapes with dynamic topol ogieswere proposed in [37], albeit only for
small datasets, and later extended in [39]. An approach suitable for larger datasets was demonstrated in [38]. It relies on 3D
acceleration for animated morphing of landscape geometry, which makesit unsuitable for Web applications.

Visualization techniquesin general haveto cope with today’s ever-growing data production and data consumption. Incremental
algorithms provide the required functionality to process big data. Incremental algorithmsdo not recal culate their internal model
from scratch for newly arriving dataitems and are thus capabl e of efficiently handling and seamlessly integrating continuously
changing or growing data. In the context of generating dynamic information landscapes we review work on incremental
dimensionality reduction and incremental clustering techniques:

2.1Incremental Dimensionality Reduction

Dimensionality reduction techniquestransform high-dimensional datainto low-dimensional dataseekingtoloseaslittleinformation
as possible. This transformation has turned out to be particularly useful in the field of visualization for projecting the high-
dimension datainto the lowdimensional visualization space. To face the growing amount of data, incremental variants have been
developed usually on top of batch methods. Incremental unsupervised techniques include multi-dimensional scaling (cf. [5]),
singular value decomposition (cf. [41], [ 7] or [20]), principal component analysis(cf. [3], [30] or [47]), random indexing (cf. [26]),
locally linear embedding (cf. [27]) or isometric feature mapping (cf. [29]). Unsupervised methods are effectivein finding compact
representations, but ignore valuable class label information of the training data. Incremental supervised techniques are thus
better suited for pattern classification tasks. Representatives of incremental supervised dimensionality reduction techniques
includelinear discriminant analysis(cf. 33], [50] or [24]), subspace learning (cf. [48]) or maximizing themargin criterion (cf. [49]).

2.2Incremental Clustering
Incremental clustering algorithms can be traced back to the 1970s, cf. Hartigan'sleader algorithm which requires only one pass
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through the data[21], Slagle’s shortest spanning path algorithm [43] or Fisher’s COBWEB system, an incremental conceptual
clustering algorithm [16]. The COBWEB system, for exampl e, has been successfully applied to support fault diagnosisor bridge
design[17]. Inspired by COBWEB, Gennari et al. proposed the CLASSIT [19] system which is capable of handling numerical
datasets. In [8], the authors introduced an incremental clustering algorithm for dynamic information processing. In dynamic
databases there is a constant adding or removing of dataitems over time. The ideais that these changes should be recognized
in the generated partition without affecting current clusters. In thelate nineties, several incremental clustering algorithms have
been presented including BIRCH [51], incremental DBSCAN [15] to support data warehousing or Ribert et al.’s clustering
algorithm to generate ahierarchy of clusters[36].

Incremental clustering algorithmsare often closely linked to research domains and designed to meet domain-specific requirements,
e.g. keeping the cluster diameter small [9] in case of information retrieval. Another application area is the analysis of gene
expression data[11] to account for the amount of microarray experiments. Incremental clustering of text documents has been
conducted as apart of the Topic Detection and Tracking initiative (cf. [1]) to detect anew event from astream of newsarticles.

To compute dynamic topography information landscapes in an incremental and thus timely efficient manner, we integrate and
combineincremental aspectsinto the generation process. (i) For clustering, we apply asimple, spherical k-means[14] and use
previously computed partitions of the document set as initial state for incremental computations. (ii) We introduce a novel
approach for document positioning which is essentially based on a simple spring forces-based model (cf. [18]) since we
observed that landscapes generated with standard positioning method displayed geometrical edges. (iii) We use a force-
directed placement (FDP) algorithm for projecting these high-dimensional cluster centroidsinto a2D visualization space. The
most attractive feature of the FDP algorithmisthat it isintrinsically incremental when applied on apreviously computed stable
layout. Re-applying FDP on previouslayout of centroidswith modified similaritieswill produce anew layout closely resembling
the previous one.

3.AlgorithmicApproach

Theoverall processisacascade of the three main components of the computation pipeline shownin Figure 1, which are outlined
in the following and described in more detail in subsections 3.1 to 3.3. A separate description of the architecture’ sincremental
aspectsis presented in Section 3.4.

(1) The first component prepares a document-term matrix by fusioning the information on each document from the keyword
relevance table and the word frequency table.

(2) The second component produces document positions in 3D space. In the first step, the kmeans clustering algorithm
partitions the documents into topically related clusters. Afterwards, aforce-directed placement algorithm (FDP) projects the
centroids’ positions of these topical clustersinto the 3D space. For anincremental landscape generation the result of previous
computations, 1C and 1D in Figure 1, provide the initial state for the clustering algorithm as well as for the centroid layout
algorithmin 3D. Finally, the document positions are computed in 3D space.

(3) Thethird component computes properly |abeled landscape images. We begin with transforming document positionsfrom a
3D infinite space onto 2D finite surface. The 2D finite surface could be the surface of a[1, 1]%-plane, the surface of aunit sphere
or asurface of aunit cylinder (non-circular parts). Thedocuments' layout position on the 2D finite surfaceisthen used to model
atopical landscape, whichisessentially an elevation matrix on a2D grid. A peek detection algorithm identifiesimportant peeks
on thetopical landscape model along with underlying documents and inquirestext descriptorsfor labeling against thereference
corpora, 1E in Figure 1. A predefined col oring scheme shapes the landscape surface and peaksreceivelabel s giving information
about the cluster topics.

3.1 Generation of Document-Term Matrix

Based on previousresearch [ 25, 42], a crawler-based architecture gatherstextual dataand storesit in content repositories after
analysis, conversion and annotation. After further pre-processing, the weblLyzard media monitoring and Web intelligence
platform (www.weblyzard.com) provides aflexible representation for each document in the form of akeyword relevancetable
and the document word frequency table (see Figure 1; 1A and 1B).
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Figure 1. The processing pipeline of theincremental landscape computation framework

Using the information from 1A and 1B for each sel ected document, the preprocessing for document keywordsisdone at (2A),
aswell as, the preprocessing for document words is done at (2B). The preprocessing results are then linearly combined, using
atunableweighting ratio, into one augmented document-term matrix (3) with uniqueterm I Ds. We generally used 60% weighting
for (2A) and 40% weighting for (2B). Note that both akeyword and adocument word are assigned uniqueterm I Ds, hence they
aredifferent dimensions.

3.2Clusteringand Projection

Theincremental clustering al gorithm (4) receivesthe document term matrix (3) asitsinput and producesfour outputs: acentroid-
to-centroid similarity matrix (5A), adocument-centroid rel ationship graph (5B), adocuments-to-centroids similarity matrix (5C)
and norm valuesfor documents and centroids (5D). The previously computed clustering result (1C) may optionally be served to
initialize the k-means algorithm module.

The algorithm for centroid positioning (6) gets the main input from (5A) and (5B). Nonincremental clustering initializes the
centroid positions randomly, incremental clustering uses the positions from previous calculations for initialization (1D). The
centroid positions, the centroid similarity matrix (5C) and the norm of centroids and documents (5D) serve as input for the
computation of the document positions (7).

The following sections describe the document clustering, the cluster positioning as well as the document positioning.

3.2.1Document Clustering

A spherical k-means algorithm partitions the documentsinto topical clusters[14]. Thek-means++ method deliversathoughtful
choice and number of cluster seedsto addressthe algorithm’s sensitivity regarding this aspect [4]. Cluster splitting and merging
strategies[31] guessthe number of clusterswithin specified minimum and maximum bounds. The Bayesian Information Criterion
[34] improves these guesses for a better cluster cohesion. As human cognition puts limits to understanding complex visual
representations, we limited the number of clustersto account for usability. In our experience, setting the limitsfor minimum and
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maximum number of cluster to 30 and 40 resulted in meaningful and aesthetically pleasing information landscapes. For incremental
clustering, previously computed partitions of the document set serve as the initial state. The system removes old documents
fromtheir respective clusters and adds new documentsto the most similar cluster centroid. Subsequently, the k-means clusterer,
including the split and merge procedure, further refines the partitions.

The algorithm’s runtime complexity is O(mnd) where as the number of clustersis m, the number of documentsis n and the
dimensionality of theterm spaceisd. Sincein our case m< n, and according to Heaps' law [23] d scaleslogarithmically with n,
the clustering part of our algorithm is considered to scale with O(nlog(n)).

3.2.2 Cluster Positioning

The clusterer aggregates the set of documentsinto topical clusters, which are represented by their high-dimensional centroids.
An FDP algorithm [18] performs a distance- preserving projection of the high-dimensional cluster centroids into the low-
dimensional visualization space. In FDP attractive forces pull together topically similar centroidswhile dissimilar centroidsare
pushed apart from each other. Therefore, spatial closeness between centroids indicates topical closeness.

The main advantage of the FDP algorithm is its capability to produce accurate and aesthetically pleasing layouts. However, a
brute-force implementation of FDP scales poorly having a cubic (in this case O(m?)) time complexity. Yet, asin our approach
m < nand the number of clusters hasaconstant upper limit, the running time of cluster positioning can be considered constant.
Also, asthe number of clustersissmall, the FDP method terminates very quickly.

The most attractive feature of the FDP algorithmisthat it isintrinsically incremental when applied on a previously computed
stable layout. Aslong asthe changesin the dataset are comparatively small, theimpact of incremental clusteringisreflected in
small changes of similarities between cluster centroids. When FDPisre-applied on a previously computed cluster layout using
the modified similarities, the resulting layout will closely resemble the previous one.

3.2.3Document Positioning

Our earlier scheme of document positioning was based on non-overlapping space partitioning [40]. The deBerg’'s Delaunay
triangulation algorithm (cf. [12]), with atime requirement of O (mlog m) timewhere misthe number of centroids, partitionsthe
2D spaceinto non overlapping triangul ar regionswith centroid positions at respective vertices. The similarity of the document
to the centroids at the vertices of the triangle determines its position. We used a similarity-based ranking scheme to find the
most similar triangle for adocument. As a preprocessing step to facilitate successive searches for the document’s most similar
triangle, the similarity-based ranking scheme takes O(n?) time to link each centroid positions and their centroid neighbors’
positionsin 2D layout. By using Barycentric coordinates the document position is then assigned to atriangular region, after
bruteforce search in O(m) time. Thusthe overall timefor positioning n documentsis O (nm+ mlog m+ n?). Withm< nand m
having an upper bound, we can assume that the algorithm runsin O(n) time. Thisalgorithm isvery fast, but we observed visual
shortcomings in the resulting landscape. Mainly, the topography of the generated landscapes follows geometrical edges,
because documents tend to be positioned on straight lines connecting cluster centroids. This negatively affects aesthetics and
compromisesthe viewing experience.

To preserve alinear running time along with pleasing viewing experiences of arealistic landscape without troubling artifacts, we
introduce two novel approachesfor document positioning: (i) thefirst approach isbased on asimple spring forces-based model
(cf. [18]) and (ii) the second approach is based on geometric concepts. In the following, we will describe these two approaches
in detalil.

3.2.3.1 Spring Force M odel Approach for Document Positioning
Assume that the document is attached to each centroid ¢ by a spring having a spring constant k . Intuitively, we assume that
this spring constant k . is proportional to the similarity between the document and the centroid c in the n-dimensional space.

According to Hooke's law, the spring force EC exerted on the document due to the centroid c at position c(x, Y, Z.) is propor-
tional to the displacement between the document position P(X, y, Z) and the centroid position.
FC = - kcrc (l)

The negative sign shows the force exerted on the document is in the opposite direction of the displacement r_c> which is
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essentially the difference between the position vector xi +y | + zk for the document and the position vector x i +y_j +z_k for
the centroid c.

Te=(x=%)i+(y-y)i+(@z-2z)k @
Herei, j and k are unit vectorsin the direction of the x-axis, y-axisand z-axis, respectively.

For the document to be positioned in an equilibrium state, the sum of all forces exerted on the document ought to be zero.

Fdoc: ZFCI - kcﬁ: :6 (3)
Ve Ve
Substituting r_c’from equation (2) in equation (3),
=Dk x=x )i =D k(Y=Y - D k(z-2)k=0 @
Yc Ve Ve
Thisimpliesthat
ch(x—xc):o, ch(y—yc):o, ch(z—zc):o )
Yc Yc Yc

In other words, if weresolveall theforces exerted on the document along the Cartesian coordinate axes, then the x-component,
y-component and z-component of the resultant force F_(;OC isalso zero. Hence, using summeation propertiesin equation (5) we
have
X = ZVC chc , y — ZVC kcyc , 7= ZVC kczc (6)

ZVC kc ZVC kc ZVC kc

Theright hand sides of each formulain equation (6) represent the weighted averages over xcomponents, y-components and z-
components of the centroids. Consequently, the document position P(x, y, 2) simply reads as

X = Zscxc, y= Zscyc, z= Y SZ. )
Ve Ve Ve
k
where s.=—— :>ZSc =1
voko Ve

As the spring force constant k_ is proportional to similarity between the document and the centroid c in the n-dimensional

space, the weightss_in equation (7) are, therefore, essentially the normalized similarity of documents with the centroid cin n-
dimensional space.

Thus, the positions of n documents partitioned into m clusters, with given clusters' layout positions and normalized similarity
with the cluster centroids, can be computed by using equation (7) in O(mn). As m < n and m has a fixed upper bound, the
computation timeisO(n), i.e. linear with the number of documents.

3.2.3.2 Geometric Approach for Document Positioning
Consider the document has the highest cosine similarity with acentroid c from the given set Sof total m centroids. The scalar

product of adocument vector rand the centroid vector Q in three dimensional spaceswill be
[P |IT | cosd) =x x+y.y+2.z ®

We assume that for all centroidsc e S, the cosine similarity cos«  between the document vector r'and the centroid vector r_c> is
an invariant with respect to dimension space transformation, and the magnitude of all position vectorsislinear with respect to
dimension space transformation. In other words, if |ﬁ | is the norm of document vector in n-dimensional space, cos 6, isthe
cosine similarity in n-dimensional space and the scaling factor k is a constant of proportionality for transforming vector
magnitude from n-dimensional spaceinto three dimensional space, then we could formulate our assumptions as
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c05190= cos«9C ,Vce S
©

[T |=KIR]

Here, the quantities on left hand sides of the equations arein three dimensional space and the quantities on right hand sides of
the equations are in n-dimensional space.

Given that we have atransformation from n-dimensional space to three dimensional spacefor agiven set of centroids S, hence
their position vector magnitudesin n-dimensional space and in three dimensional space are known, we could roughly estimate
the scaling factor k by summing all centroid position vector magnitudes. Here, we could use any suitable measure of vector
norm. The assumptions in equation (9) lead us to a scaling factor k:

def ZVOG Sl rcl
estimate ZVCE sl Rcl
Thus, with known document vector magnitudes, known cosine similarity and unknown document position (X, y, 2) in the 3D

space, the equation (8) represents an equation of aplane at a perpendicular distanced_= | all r_c’ | cos ¥ from the origin of the
three-dimensional Cartesian coordinate space. We could use a measured value of the perpendicular distance d_ as

(10)

def ==
d.Zk . |RIIT, [coso 11
Thusequation (8) will become
X X+y y+zz=d, )

Choosing another two centroids (b and a) from the given set S of m centroids, the equation generates a system of linear
equations for the intersection point (X, y, ) of three non-parallel planes.

Xa ya Za X da
X % % [X}= d, (13)
Xc yc Zc X dc

The solution for the above system of linear equations may or may not exist (for example, the solution does not exist if aline
joining any two centroids positions also passes through the origin of three dimension space). The solution, if it exists, isa
candidate for documents position (X, y, Z) and can be computed by using the simple Cramer’srule. Asthe number of choicesfor
centroid b and centroid ais O(m?), we can compute all the candidates for the document position in O(m?) time. Asmhasafixed
upper bound, the solution is computed in constant time. Finally, the most desirable candidate will be selected by comparing its
distance from the position of centroid n. Thus, the positions of n documents can be computed in linear time O(n).

3.2.3.3 Estimation of Scaling Factor k

Equation (10) gives us an unsophisticated estimate of scaling factor k, although, the given transformed positions of all centroids
areresultsof Force Directed Placement (FDP) algorithms. The FDP algorithms generally use scalar productsinstead of position
vectors. Furthermore, in contrast to cosine similarity between document and centroid as assumed in equation (9), the given
cosine similarity between centroids are not necessarily reflecting invariance.

Therefore, a better estimation for the scaling factor k will, arguably, be the one computed by using scalar product in the three
dimension space and in the n-dimension space.

- = — =
def ZVa,ceSra' C  def ZVa,ceslra”rc|COSﬂac (14)
estimate = = =
ZVa,ceSRa'R ZVa,ces|Ra”—R}clcosqzxc

Nevertheless, the computation time O(n?) for k

wstimate US NG €quation (14) is higher as compared to computation time O(m) using
equation (10).
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3.2.4 Space Transfor mation, L andscape Creation and Peak L abeling

Using document layout positions we computed the corresponding location on a finite two dimensional surface illustrated in
(Figure1; 8), whichisthen used to compute an el evation matrix (9) that represents an information landscape model. This matrix
isthen utilized in (10) to identify peak locations, heights and list of documents related to the peak.

The peak detection algorithm is based on akernel window convolution over the landscape model. Thelist of documents under
the peak isthen used in the peak label assignment module (11) for subsequent queries and comparisons with the semantically
tagged reference corpora (1E), which is continuously refined by the webLyzard platform.

The assigned labels to peaks are placed on the information landscape surface images (13) by using coloring scheme for
elevation values (9) and by using labeling heuristic algorithms of the landscape image rendering module (12).

3.2.4.1 Space Transformation on 2D Surface

In earlier versions of our processing pipeline, we employed a 2D version of FDP for computing document positionsin 2D. In
contrast, in our new geometric approach for computing document positions, the number of axesis equal to the number of most
similar centroidswhich are being used in computing the position. Asthe computation for document position needs at least three
centroidsfor realistic landscape, we used a 3D version of FDP modulesfor computing document positionsin 3D space. Thisalso
givesusmoreflexibility in visualization metaphors. For example, instead of simple projection on afixed 2D planewe also used
projectionson curved surfaces of acylinder and asphere. Projection on asphereisachieved by using (longitude, latitude)pairs,
and the projection (u, v) on cylinder surface is computed by

u =% tanfl(%) , V=12, where tan~

1% =atan2(y, X)e [-7, 7] (15

In contrast to a classical landscape in a 2D plane, projection on the curved surface of a cylinder yields a landscape with no
boundaries on its left and right sides. Projection on a sphere yields a landscape with no boundaries at all resulting in a 3D
“topical planet ” visualisation. The reason we first project into the 3D space using FDP and then apply an additional
transformation for projection onto a 2D surface (such asa 2D plane, the surface of acylinder, or asphere) isthat it significantly
simplifies the realization of the projection method. This allows us to always use the same FDP algorithm (using Euclidean
distance metrics) for projecting in 3D, saving usthe effort and the complexity of developing specialized FDP-versions (and the
corresponding distance metrics) for projecting onto surfaces of different geometrical bodies. Instead, we apply well-known,
simple mathematical transformations to transform from the 3D space onto the geometrical body surface.

3.2.4.2L andscapeModeling

Aninformation landscapeis modeled by an elevation matrix with aspecific resolution (for example 4096 x 4096). Inthismodel, a
document is represented by a small peak of fixed height having a shape of a Gaussian curve. The peak is placed at the
corresponding position over the underlying matrix cells. The document influences the landscape by its height and the radius of
its peak. The height value on amatrix cell isinfluenced by the document’s peak height at that location, and the radius reflects
how far the document’s influence spreads. The elevation values of the underlying matrix cells are superimposed values of the
peak heights, reflecting the documents’ density at that particular location.

3.2.4.3 Peak Detection

We used a kernel window-based peak detection algorithm for identifying the significant peaks of the landscape (cf. [45]
[35]).The center value of the matrix cell iscompared with the average of the convol ution of the window with the elevation matrix.
If the center value is higher than the average convolving value, then the location is identified as a peak. After detecting all
significant peaks, documents are assigned to their nearest peak by comparing their Euclidean distance in the landscape.

3.2.4.4 L abe Computation

The set of documents under a peak is evaluated against the semantically tagged reference corpora. The evaluation process
comprises of chi-sguare test of significance with Yates' correction for identifying over-represented terms. Furthermore, for
discovering the frequently appearing text fragments within the same sentences and within the documents, it also usestheterm
cooccurrence analysis, based on pattern matching algorithm, along with trigger phrases, based on regular expressions[25, 42].
Finally in the resultant list, redundant nouns and synonymous labels are filtered out by using regular expressions and lookups
in the WordNet library, and/or lookups in the customized dictionary of synonyms.
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3.24.5Map Generation and L abel Placement
The last step in our landscape generation process encompasses (i) the proper coloring of each pixel, depending on the values
of the corresponding density matrix cells, and (ii) the proper assignment of textual labels over the surface image.

We used the color blue to express lowest height values, then green, brown and finally light gray, for the highest height values.
The slopes of the height are used for picking different shades from our color scheme. Consequently, a resulting landscape
surface image resembles a geographic map having the hills at large document density areas, and valleys or oceans at the low
document density areas. A screen shot of alandscape surface areais presented in Figure 3

Finally, a heuristic point feature label placement algorithm [10] is used for laying out labels on the basis of labeling quality
evaluation criteriareflected in thefollowing basic rules.

1. No label should overlap with another label
2. No label should overlap with the boundary of theimage.
3. Nolabel should overlap another peak location.

4. A peak’s label has only four possible placements near the peak locations. These placements are rectangul ar spaces at top-
right, bottom-right, top-left and bottom-left of the peak locations. At most one of these placements could be occupied by the
peak’slabel.

5. A peak location could be tagged with at most five labels.

3.3Incremental Computation

Aninitial landscape computation is required for subsequent computation of incremental landscapes. The algorithm is applied
ontheinitial dataset and the result of the clustering partitions and layout position of the document is saved for future use. Every
time we have some fresh data available, the equal number of data has to be retired for keeping the data chunk size in fresh
computations. Therefore, after initialization from the previously computed stabl e partition, the incremental k-means algorithm
removes the retired documents and adding new documents to the most similar clusters which leads to a number of k-means
iterationsfor subsequent stabl e partition. FDP algorithm minimizes the average stress value hence the successive iteration will
finally stop at the first local minimafor the average stressvalue.

An example showing information landscapes for adynamically changing sample documentsfrom environmental blogsisshown
in Figure 2. The sequence of incrementally computed i nformation landscapes, visualizing 5,000 documents each, reflectsweekly
changes from 25 March 2012 to 6 May 2012. Images in right column of Figure 2 are results of document computation using
geometric planesintersection methodswhile theimagesin right column of Figure 2 areresults of spring force based computations
for document positioning. Approximately 10% of the dataset changed between each individual steps—resulting in transformations
of portions of the topography, while the overall structure remains recognizable.

Considering that all parts of the algorithm except clustering scale linearly (or better) with the number of documents, the time
complexity of the entirelandscape generation processwill be dominated by clustering, yielding arunning time of O(nlog(n) ) .

4. Evaluation

4.1MetricsUsed for Evaluation
In order to evaluate how good our document placements could retain its respective positionsin higher dimension we will use
following two measurements.

4.1.1 SressFunction
In Multidimensional scaling (MDS) literature, theloss function also known as raw stress function or measure of badness-of-fit
isfairly formulated as[13, 6]

n-1 n
i=1 j=i
The MDSHliteraturerefer similarity or dissimilarity values P; asthe proximity values, and the corresponding distance dij( X)as
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Figure 2. Temporal sequence of six incrementally computed information landscapes by using two
different document position methods (spring force on left and geometric on right), reflecting weekly
changes (top to bottom) in the underlying document set
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Figure 3. A screenshot of the information landscape computed for 5000 documents

the disparity values, in MDS space X which isreferred as configuration space. Thefunctionf : P~ dij( X)) specifiestheMDS
model. Here w; is the weight to be chosen appropriately. For handling missing data, we could choose W, = 0, if datais not
available, otherwisewij =1[13].

It isrequired that the proximity values must be mapped to their corresponding distances, i.e. f ( p; )= dij( X)). However, the
proximity always contains noises due to measurement imprecision. Thus, one must consider our transformation as f ( p; )= dij(
X)), where = means “ equal except for some small discrepancy”. [6].

4.1.2 Smilarity Estimation

Inour case, only C, V K e S, the cosinesimilarity of document i with centroid K isavailable, where Sisthe set of all centroids.
As the direct similarity measure between document i and document j is computationally expensive to obtain we therefore
propose an estimation of similarity between two documents by employing known values of similarity between document and
centroids. The estimation is based on the idea that in the absence of an observation an average value could be used. In other
words, from the stand point of document i , the similarity of document i with the centroid of document j could be taken instead
of the direct similarity between mentsi and j. The same argument follows from the stand point of document j. Combining both
perspectives by using an average formulais areasonably accurate estimated value. We used geometric mean.

slj=m, ¢, >c, VKe S-I, ch>chVKe S-J (17)

Here, the centroid of document i is designated as | and the centroid of document j is designated as a J. Clearly, the similarity
value ¢, of document i with centroid | is greater than the similarity value ¢, of document i with any other centroid, say the
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centroid K, IikewisecjJ >ch.

Intuitively,c_ =max(c,)andd__ =max(d, )for VKe S,ie [1,n] whered, isthe Euclidian distance between the position
of document i and the position of centroid K in MDS configuration space X, then

f(pij>=dm(—v?c“ ) (18

In simple words, ¢___is the maximum similarity value of a document and a centroid whereas d__ is the maximum distance
between a document and a centroid in configuration space X, i.e., our final 2D layout space.

We end up with an average version of stressformulain equation (16)

2
n-iyhn (o
zzi=llzj=i O (1—@)_%()() |
) — 19
e n(n-1) (19

The lower the stress value in equation (19), the better will be the positioning of the documents.

4.1.3Hit Ratio

We propose a measure that tells us how many documents are still close to its top most similar centroid as compared to other
centroids. In other words, a document which belongs to a cluster “A”, in higher dimension, belongs to the same cluster “A”,
hence a hit, in the layout configuration space. We consider this as a better measure for the visual sense because it tells some
degree of certainty about the document clustering. If the document is still belongsto same partition then it ismorelikely to be
sitting around similar documents, even though, in side that partition the order of similarity between documents may have

compromised. To formulate this measure we define afunction for each document with position vector?i’.

—

hit (r.) ":e*{ é’ iff 3Ae S|, I<IT In IR AI<IR (|VKeS

otherwise
Here, ﬁ A andHF\’i A represents difference vectors between document and centroid A in low and high dimensional space respec-
tively. Thus, we define our metric

(20)

o w I,
hit rat|o:ﬁz hit () (21)
i=0
The higher the hit ratio in equation (21), we consider, the better will be the document positioning.

4.2 Experimental Setup

Tofacilitate the evaluation of theincremental computation framework we used seven consecutive incremental computationsfor
5000 documents from environmental blogs datasets of the MediaWatch on Climate Change [25] during the period from 25 March
2012 to 6 May 2012 (weekly changes). In thewebLyzard framework, each week new documents are gathered viaa\Web crawler
and are available for landscape computations. Since, the new documents replaces the equal number of retiring documentsfrom
the fresh 5000 documents set, the landscapes for the fresh document set, need to be computed incrementally based on results
of previous landscape computations of the last weeks 5000 documents set.

Furthermore, for the purpose of eval uation, we computed four of our document positioning scheme for the same set of clustered
documents. The landscapes images (only first six weeks) of two document positioning schemes are shown in Figure 2. The
results of using spring force based method utilizing all centroids (designated S1in Figure4 and Figure5) isin theleft column of
the Figure 2, whilethe results of our geometric plain intersection method (designated G in Figure4 and Figure 5) is presented in
theright column of the Figure 2. One could feel the incremental viewing experience of landscapesin screening theimagesfrom
top to bottom for each column of Figure 2.

Two additional versions of spring force based methods by choosing the similarity weights and the number of centroidsin using
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equation (7) are also investigated. In the second version of spring force based methods (designated S2 in Figure 4 and Figure
5) we doubled the similarity value corresponding to the most similar centroid of document and in the third version (designated
S23inFigure4 and Figure 5) we further limited the number of centroidsto the top most three. The documents positioning within
the incremental landscapes are finally evaluated using the stress value computations, equation (19), and our proposed hit ratio
measures, equation (21). The results of the stress value and hit ratios are presented in Figure 4 and Figure 5 respectively.

The stress value could arguably reflect the goodness of the document mapping from the n-dimensiona space to the two
dimensional space. However, the stress value computation requires the computation of distances (dissimilarity) for all pairs of
documentsin high-dimensional space, whichiscomputationally expensive and isquadratic intime. To speed up the processand
to be capable of handling large datasets, we introduce a faster variant which approximates the true stress values. Instead of
computing dissimilarity between documents using their respective similarity, we substituted those similarity values with a
geometric mean of the similarity between one document and centroid of the second document as an estimated value of similarity
between both documents.

Theformulain equation (7) for spring force based methods and the formulain equation (13) for geometric intersection of planes
based methods, reflects the mapping of document from the n-dimensional space to the two dimensional space. However, a
document belongsto a particular cluster may not get aposition closer to its centroid position in two dimensional space. Instead,
it may be closer to another centroid. Thisisthe consequence of compromised and imperfect centroid layout positionsin thetwo
dimensional space, which results in the centroids losing receptiveness and similarities notions of their corresponding n-
dimensional space.

As the documents needed to be placed closer to the respective centroids, it is a good ideato weight more for its own centroid
or to cherry pick the top most similar centroids with some scheme of weighting and disregard or eliminate the less similar
centroids. We observed that considering top three most similar centroids with doubling the similarity of the documentswith its
own centroid turns outs to place more than 50% of documents near its own centroid position in two dimension space. All
measurements were performed on amachine equipped with a2.66GHz Intel Xeon X5355 CPU, 8GB of memory, running 64 bit
versionsof Linux and Javav1.6.0_29.

4.3 Comparison of Document Positioning M ethodson I ncrementing L andscapes
The stress of G in Figure 4 is increasing monotonically while the stresses values of S1 and S2 decreases first and then start
increasing for subsequent computation.
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Figure 4. Comparison of averageraw stressvalues, inincremental computation from 25 March
2012 to 6 May 2012 (weekly changes), computed by four different document positioning
methods, (i) geometric plain intersection method, designated as G, (ii) spring force method with
all centroids, designated as S1, (iii) spring force method with all centroids and weighting the
most similar centroid twice, designated as S2, (iv) spring force method with only three most
similar centroids and wei ghting the most similar centroidstwice, designated as S23

Although, the stress values might be attributed to nature of unpredictable incremental changes in dataset, the choices of
weightsfor thetop most similar centroid and cherry picking of centroidsin spring force based methods, is clearly, hasapositive
impact on stress values as exposed by S1, S2 and S23 in Figure 4. The impacts of these choices are more obviousin Figure 5
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wherethehit ratio of S2 and S23 hasajump start and are reaching considerably high hit ratio values, above 50% for S2 and above
70% for S23, ascompared to S1. Thehit ratio of Pisnot changing significantly for successiveincremental landscape computa-
tion.
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Figure5. Trendsof hit ratios, inincremental computation from 25 March 2012 to 6 May 2012 (weekly changes),
computed by (i) geometric plain intersection method, designated as G, (ii) spring force method with al centroids,
labeled as S1, (iii) spring force method with all centroids and weighting the most similar centroid twice, labeled as
S2, (iv) spring force method with only three most similar centroids and weighting the most similar centroidstwice,
labeled as S23

5. Conclusion

This paper has introduced and evaluated a scalable incremental algorithm for generating dynamic topography information
landscapes. The algorithm was applied on text datato visualize the evolution of document repositorieswhere, in our opinion, it
produces visually appealing layouts. Although methods based on force-directed placement are known to produce visually
pleasant layouts, an empirical confirmation for our algorithm is still missing, but will be addressed in afuture user eval uation.

Our method combines well-known algorithmic approaches, such as k-means clustering and force-directed placement, and
introduces a novel method for fast document positioning which relies on previously computed cluster centroid positions. The
central feature of the algorithm isit’sincrementally. As shown by comparing the quality of incrementally computed layouts,
incremental operation tendsto improve initial stress values and hit ratios. Scalability of the algorithm in its current version is
determined by the clustering step. Asit isthe only part of the algorithm with atime complexity which is (slightly) worse than
linear, further optimizationswill focus on increasing the scalahility of this clustering step.

Future work will also focus on improving the layout quality by utilizing semantic information in the process of calculating
similarities between documents, e.g. during clustering. These semanticswill help usto better handle linguistic concepts such as
synonymy and thus to capture more implicit, meaningful associations amongst textual resources.

Acknowledgement

The work presented in this paper was developed within the DIVINE project (www.weblyzard.com/divine), funded by the
Austrian Ministry of Transport, Innovation & Technology (BMVIT) and the Austrian Research Promotion Agency (FFG) within
the strategic objective FIT-1T (www.ffg.at/fit-it). The Know-Center isfunded within the Austrian COMET Program (Competence
Centersfor Excellent Technol ogies) under the auspices of BMVIT, the Austrian Ministry of Eco-nomicsand Labor, and by the
State of Styria.

References

[1] Allan, J. et al. (1998). Topic Detection and Tracking Pilot Study: Final Report. In: Proceedings of the DARPA Broadcast News
Transcription and Under standing Workshop. Lansdowne, US.

[2] Andrews, K. et al. (2002). TheInfoSky Visual Explorer: Exploiting Hierarchica Structureand Document Similarities. Information
Visualization, p. 166-181.

62 Journal of Multimedia Processing and Technologies Volume 3 Number 1 March 2012




[3] Artac, M., Jogan, M., Leonardis, A. (2002). Incremental PCA for on-linevisual learning and recognition. In: Proceedings of the
16th International Conference on Pattern Recognition, p. 781-784.

[4] Arthur, D., Vassilvitskii, S. (2007). K-means ++: The advantages of careful seeding. Proceedings of the 18th annual ACM-
S AM symposiumon Discrete algorithms, p.1027-1035.

[5] Basalgj, W. (1999). Incremental multidimensional scaling method for database visualization. In: Proceedings of SPIE - The
International Society for Optical Engineering, p. 149-58.

[6] Borg, I., Groenen, PJ.F. (2005). Modern Multidimensional Scaling: Theory And Applications. 2nd ed. New York: Springer-
Verlag. Springer Series|n Statistics.

[7] Brand, M. (2002). Incremental singular value decomposition of uncertain datawith missing values. Lecture Notesin Computer
Science, p.707-720.

[8] Can, F., 1993. Incremental clustering for dynamic information processing. ACM Transactions on | nformation Systems, p. 143—
164.

[9] Charikar, M., Chekuri, C., Feder, T., Motwani, R. (1997). Incremental clustering and dynamicinformation retrieval. Proceedings
of the 29th Annual ACM Symposium on Theory of Computing, p. 626-34.

[10] Christensen, J., Marks, J., Shieber, S. (1995). An empirical study of algorithmsfor point featurelabel placement. ACM Trans.
on Graphics, 14 (3) 203-232.

[11] Das, R., Bhattacharyya, D. K., Kalita, J. K. (2009). Anincremental clustering of gene expression data. Nature & Biologically
Inspired Computing, p.742-47.

[12] de Berg, M., Cheong, O., van Kreveld, M., Overmar, M. (2008). Computational Geometry: Algorithmsand Applications.
Springer-Verlag.

[13] deLeeuw, J. (1977). Applications of convex analysisto multidimensional scaling. In: Barra, J. R., Brodeau, F., Romier, G, van
Cutsem, B. eds. Recent devel opmentsin statistics. Amsterdam, The Netherlands: North-Holland. p.133-45.

[14] Dhillon, I. S., Modha, D. S. (2001). Concept decompositionsfor large sparse text data usingclustering. Machine Learning,
p.143-175.

[15] Ester, M. et a. (1998). Incremental clustering for mining in a data warehousing environment. In: Proceedings of 24th
International Conference on Very Large Data Bases (VLDB-98), p.323-33.

[16] Fisher, D. (1987). Knowledge acquisition viaincremental conceptual clustering. Machine Learning, p.139-172.

[17] Fisher, D. etal. (1993). Applying Al clustering to engineering tasks. |EEE Expert: Intelligent Systemsand Their Applications,
p. 51-60.

[18] Fruchterman, T., Reingold, E. (1991). Graph Drawing by Force-directed Placement. Software - Practice and Experience, 12,
p.1129-1164.

[19] Gennari, J., Langley, P. Fisher, D. (1989). Models of incremental concept formation. Artificial Intelligence, p. 11-61.

[20] Gorrell, G. ( 2006). Generalized Hebbian Algorithm for Incremental Singular Value Decomposition in Natural Language
Processing. In: Proceedings of Interspeech, p. 97-104.

[21] Hartigan, J. A. (1975). Clustering Algorithms. New York, NY: John Wiley and Sons, Inc.

[22] Havre, S, Hetzler, E., Whitney, P, Nowell, L. (2002). ThemeRiver: Visuaizing thematic changesin large document collections.
|EEE Transactions on Visualization & Computer Graphics, p. 9-20.

[23] Heaps, H. (1978). Information Retrieval: Computational and Theoretical Aspects. p. 206—-208.

[24] Hiraoka, K. et al. (2000). Successivelearning of linear discriminant analysis: Sanger-TypeAlgorithm. In: Proceedings of the
International Conference on Pattern Recognition, p. 2664-67.

[25] Hubmann-Haidvogel, A., Scharl, A., Weichselbraun, A. (2009). Multiple coordinated views for searching and navigating
web content repositories. p.179 (12): 1813-1821.

[26] Kanerva, P, Kristofersson, J., Holst, A. (2000). Random indexing of text samplesfor latent semantic analysis. In: Proceedings
of the 22nd Conference of the Cognitive Science Society, p. 103— 106.

Journal of Multimedia Processing and Technologies Volume 3 Number 1 March 2012 63




[27] Kouropteva, O., Okun, O., Pietikdinen, M. (2005). Incremental locally linear embedding. Pattern Recognition, p. 1764-67.

[28] Krishnan, M. et al. (2007). Scalable visual analytics of massive textual datasets. 21st IEEE Int’| Parallel and Distributed
Processing Symposium. |EEE Computer Society.

[29] Law, M., Jain, A. (2006). Incremental nonlinear dimensionality reduction by manifold learning. |EEE Transactions on
Pattern Analysis and Machine Intelligence, p. 377-91.

[30] Li, Y., Xu, L., Morphett, J., Jacobs, R. (2003). Anintegrated algorithm of incremental and robust PCA. In: Proceedings of the
International Conference on Image Processing, p. 245-48.

[31] Muhr, M., Granitzer, M. (2009). Automatic cluster number selection using asplit and merge kmeans approach. Proceedings
of the 20th International Workshop on Database and Expert Systems Application, p. 363-67.

[32] Muhr, M., Sabol, V., Granitzer, M. (2010). Scalable Recursive Top-Down Hierarchical Clustering Approach with implicit
Model Selection for Textual Data Sets. Database and Expert Systems Applications, DEXA, International Workshops, p.15-19.

[33] Pang, S., Ozawa, S., Kasabov, N. (2005). Incremental linear discriminate analysisfor classification of data streams. |IEEE
transactions on systems man and cybernetics, p. 905-14.

[34] Pelleg, D., Moore, A. ( 2000). X-means. Extending k-meanswith efficient estimation of the number of clusters. In: Proceedings
of the 17th International Conference on Machine Learning, p. 727-734.

[35] Razaz, M., Hagyard, D. M. P. (1999). Efficient convolution based algorithmsfor erosion and dilation. In: Proceedings of the
|EEE-EURAS P Workshop on Nonlinear Signal and Image Processing (NSIP’99), p. 360—363.

[36] Ribert, A., Enngji, A., Lecourtier, Y. (1999). An incremental hierarchical clustering. Proceedings of the Vision Interface
Conference, p. 586-91.

[37] Sabal, V., Granitzer, M., Kienreich, W. (2007). Fused Exploration of Tempora Developmentsand Topical Relation-shipsin
Heterogeneous Data Sets. In: Proceedings of the 11th International Conference Information Visualization, p. 369-75.

[38] Sabal, V., Kienreich, W. (2009). Visualizing Temporal Changesin Information Landscapes. Poster and Demo at the Euro\is.

[39] Sabal, V., Scharl, A. (2008). Visuaizing Temporal-Semantic Relationsin Dynamic Information L andscapes. 11th I nternational
Conference on Geographic Information Science, Semantic Web Meets Geospatial Applications Workshop.

[40Q] Sabal, V. et d. (2010). Incremental Computation of | nformation L andscapes for Dynamic Web I nterfaces. Proceedings of the
10th Brazilian Symposium on Human Factorsin Computer Systems, p. 205-08.

[41] Sarwar, B., Karypis, G, Konstan, J., Riedl, J. (2002). Incremental singular value decomposition algorithmsfor highly scalable
recommender systems. In: Proceedings of the 5th I nternational Conference on Computer and I nfor mation Science, p. 399-404.

[42] Scharl, A., Weichselbraun, A., Liu, W. (2007). Tracking and modeling information diffusion acrossinteractive online media.
2(2) 135-45.

[43] Slagle, J., Chang, C., Heller, S. (1975). A clustering and data-reorgani zing al gorithm. |EEE Trans. Syst. Man Cybern, p. 125—
128

[44] Syed, K.A.A. etd. (2012). Dynamic Topography Information L andscapes- An Incremental Approach toVisual Knowledge
Discovery. In Cuzzocrea, & Dayal, U., eds. Data Warehousing and Knowledge Discovery - 14th International Conference,
DaWak 2012, LNCS7448. Vienna, Austria, Springer.

[45] van Herk, M. (1992). A fast algorithm for local minimum and maximum filterson rectangular and octagonal kernels. Pattern
Recognition Letters, 13 (7) 517-21.

[46] webLyzard, n.d. www.weblyzard.com. [Onling].

[47] Weng, J., Zhang, Y., Hwang, W. (2003). Candid covariance-free incremental principal component analysis. IEEE Trans.
Pattern Analysis and Machine Intelligence, p. 1034-40.

[48] Yan, J., Cheng, Q., Yang, Q., Zhang, B. (2005). Anincremental subspacelearning algorithmto categorizelarge scaletext data.
p. 52-63.

[49] Yan, J. et al. (2006). Effective and efficient dimensionality reduction for large-scal e and streaming data preprocessing. |EEE
Trans. on Knowl. and Data Eng, p. 320-33.

64 Journal of Multimedia Processing and Technologies Volume 3 Number 1 March 2012




[50] Ye, J., Janardan, R., Kumar, V. (2005). IDR/QR: Anincremental dimension reduction algorithm via QR decomposition. |IEEE
Transactions on Knowledge and Data Engineering, p. 1208-22.

[51] Zhang, T., Ramakrishnan, R., Livny, M. (1996). BIRCH: An efficient data clustering method for very large databases.
Proceedings of the International Conference on Management of Data, p. 103-14.

Journal of Multimedia Processing and Technologies Volume 3 Number 1 March 2012 65




