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Abstract: Dynamic environments require effective update mechanisms for ontologies to incorporate new knowledge.
In this position paper we present a dynamic framework for ontology learning which integrates automated
learning methods with rapid user feedback mechanism to build and extend lightweight domain ontologies at
regular intervals. Automated methods collect evidence from a variety of heterogeneous sources and generate
an ontology with spreading activation techniques, while crowdsourcing in the form of Games with a Purpose
validates the new ontology elements. Special data structures support dynamic confidence management in
regards to three major aspects of the ontology: (i) the incoming facts collected from evidence sources, (ii) the
relations that constitute the extended ontology, and (iii) the observed quality of evidence sources. Based on
these data structures we propose trend detection experiments to measure not only significant changes in the
domain, but also in the conceptualization suggested by user feedback.

1 INTRODUCTION

Ontologies are the backbone of the Semantic Web.
Due to the highly dynamic characteristics of many
domains, it is necessary to keep ontologies up-to-
date to ensure their usefulness. A common defini-
tion of ontology evolution is the “timely adaptation
of an ontology to the arising changes and the consis-
tent management of these changes” (Haase and Sto-
janovic, 2005). In this position paper we focus on
the timely adaptation of an ontology learning frame-
work to changes arising in a heterogeneous set of ev-
idence sources in dynamic domains, and touch the
consistent management of changes only implicitly. In
contrast to other research projects investigating ontol-
ogy dynamics, we are not only interested in keeping
lightweight ontologies up-to-date, but especially in
the management of the fine-grained (regarding the ev-
idence sources and time periods) analysis of sources
of change, in the detection of trends and patterns, and
in making the reasons for change traceable.

We propose an ontology learning system that
traces confidence dynamics on the level of (i) evi-
dence sources, (ii) the results of the ontology learn-
ing algorithms, and (iii) the quality of input sources.
For these tasks we use specialized matrix-based data

structures to capture dynamic confidence aspects. On-
tology learning literature distinguishes the manage-
ment of changes performed by the user (Noy et al.,
2006; Vrandecic et al., 2005) and systems that fo-
cus on learning and updating ontologies dynami-
cally (Alani et al., 2006; Novacek et al., 2007). The
proposed framework belongs to the second category,
but tightly integrates user input into the learning cycle
to validate the results of the learning algorithms and
to optimize the performance of these algorithms over
time.

Section 2 provides an overview of related work.
Section 3 then briefly introduces the ontology learn-
ing and confidence dynamics framework. The envi-
sioned trend detection experiments and the formal de-
scription of the matrix-based data structures follow in
Section 4. A discussion of contributions and future
work concludes the paper in Section 5.

2 Related Work

This paper focuses on dynamic aspects of an ontol-
ogy learning system, and also touches the integration
of user feedback into the learning process. Ontology



learning refers to the (semi-)automatic generation of
ontologies, aiming to reduce the effort involved in the
expensive task of manual ontology construction. On-
tology learning typically involves corpus linguistics
to extract semantically similar terms to form clus-
ters of meaning (Wohlgenannt et al., 2009), and ap-
proaches such as the lexico-syntactic patterns or rules
inspired by Hearst (Hearst, 1992).

Similarly to ontology learning, most ontology dy-
namics approaches rely on a single source of evi-
dence to derive changes, usually text-based sources
– as domain text is an abundant resource. Tools such
as EVOLVA (Zablith et al., 2010), SPRAT (Maynard
et al., 2009) and FLOR (d’Aquin et al., 2008) belong
to this category. In contrast to other approaches which
focus on just one aspect, EVOLVA aims to cover both
to the adaptation of ontologies and the management
of changes (Zablith et al., 2009).

Except for initial efforts in the RELExO frame-
work (Maynard and Aswani, 2010), which is a tool
for semi-automatic ontology refinement based on For-
mal Concept Analysis, there are no ontology dynam-
ics tools to our knowledge that utilize data from mul-
tiple and heterogeneous sources. Ontology dynamics
triggered concurrently by heterogeneous sources re-
main an open research question. Our proposed system
flexibly integrates a large number of evidence sources
and methods (based on unstructured, structured and
social data) into the learning algorithms.

Dataset dynamics is also a novel research trend in
the linked data community. In contrast to our work,
which focuses on domain ontologies and only inte-
grates and interprets data relevant to the domain, the
linked data community monitors the evolution of the
linked data cloud as a whole (Popitsch and Haslhofer,
2010; Umbrich et al., 2010).

We propose to use an evidence confidence ma-
trix (see Section 4.1), for the integration of evidence
from multiple sources, as well as for ontology evo-
lution and trend detection experiments. Cimiano et
al. (Cimiano et al., 2009) already suggested the use
of confidences in Text2Onto. They calculate a confi-
dence for each learned object and store it in a Prob-
abilistic Ontology Model (POM) to allow more so-
phisticated ways of user interaction and visualization.
Cimiano’s work has focused on the change manage-
ment aspect in ontology evolution, and not on trend
detection or advanced pattern analysis, as we aim to.

Flouris et al. (Flouris et al., 2006) use a differ-
ent approach by applying the work in belief revision
theory to the field of ontology evolution. They stress
that automatic and computer-based evolution instead
of manual change management is necessary and de-
sirable in many contexts, a statement which resonates

well with the approach proposed in this paper.
For the ongoing evaluation of the learned ontolo-

gies we use crowdsourcing and Games with a Pur-
pose (GWAP) (Ahn and Dabbish, 2008) to evalu-
ate and optimize the influence of respective evidence
sources and extraction methods within the learning
algorithms. GWAPs typically solve computational
problems that are easy for humans but hard to tackle
for machines, and motivate users with the incentive
schemes of games. Existing GWAPs in the field of on-
tology learning like OntoPronto (Siorpaes and Hepp,
2008) and Guess What ?! (Markotschi and Voelker,
2010) do not offer a similar integration and feedback
loop between the games and the learning algorithm.

3 The Ontology Learning
Framework

This section describes the ontology learning frame-
work which is the foundation for the trend detection
experiments proposed in the paper. We will focus on
the components directly related to ontology dynamics
and confidence management, but also touch the other
aspects for the sake of comprehensibility and com-
pleteness.

Figure 1 gives a graphical overview of the sys-
tem and its workflow. The ontology learning pro-
cess starts from a typically small seed ontology (a
few concepts and relations). The seed ontology is
static, thereby making a comparison of the learned
parts and their dynamics more meaningful. The first
step in the process is the collection of evidence data
for the given seed concepts. We collect evidence data,
i.e., terms related to the seed concepts, from a variety
of sources (e.g., domain text) with a variety of meth-
ods (e.g., co-occurrence statistics or Hearst pattern).
Section 4.1 gives more information about evidence
sources. To track the dynamics of the domain the doc-
uments and other underlying data originate from the
period of time in question. We will compare weekly
and monthly intervals when building new ontologies.

All evidence is collected in a graph data structure
called the semantic network. The semantic network
includes the seed concepts and all extracted terms
connected to the seed concepts with typed links. The
type of links reflects the evidence source and the ob-
served strength of relation. The evidence confidence
matrix (ECM) (see Section 4.1) constitutes an addi-
tional representation of the semantic network – the
ECM also includes the dimension of time for use in
subsequent trend detection experiments.

The semantic network is then transformed into a
spreading activation network. Spreading activation is



Figure 1: Ontology Extension Architecture System Diagram.

a search technique inspired by the human brain and
its cognitive models. The source impact vector (SIV,
see Section 4.2), which reflects user-generated con-
fidence into quality of evidence sources, contributes
to the link weights in the spreading activation net-
work, making high quality sources have more impact
on the resulting ontology. The SIV evolves over time
according to user feedback harvested from GWAPs.
In the next step spreading activation detects the (e.g.,
20) most relevant concept candidates to be included in
the extended ontology. A round of user feedback via
GWAPs (see the paragraph below) accepts or rejects
these new concept candidates.

Another run of spreading activation then positions
the new concepts in the ontology, i.e., it selects the
most related concept from the seed ontology to con-
nect the new concept to. Every new concept gets con-
nected to exactly one seed concept. User feedback
confirms the position or suggests a better one (see be-
low). The spreading activation algorithm outputs the
relation strength between every seed concept and ev-
ery new concept. We capture this learning algorithm-
based confidence information in a relation strength
matrix (see Section 4.3) for trend detection exper-
iments and to support user selection of relations if
needed (see below).

Finally, relation type detection with techniques
to identify taxonomic relations as described in (Liu
et al., 2005) and methods to label non-taxonomic re-
lations (Weichselbraun et al., 2010b) conclude the
learning process.

The ontology learning system works in an itera-
tive fashion, where the newly generated extended on-
tology functions as seed ontology in the next learn-
ing cycle. The ontology building process stops when
the ontology reaches the desired size and granularity
level.

The underlying ontology learning components

have been thoroughly evaluated and published in (Liu
et al., 2005), (Weichselbraun et al., 2010a) and (We-
ichselbraun et al., 2010b). The framework presented
in this paper extends this work by introducing dy-
namic data structures for confidence management, the
source impact vector (SIV) and through mechanisms
for its adaptation according to user feedback, as we
detail next.

Low-Overhead Forms of User Feedback

It is evident from the system description (Figure 1)
that rapid user feedback captured for example through
Games with a Purpose (GWAPs) is a key compo-
nent. We will extend our game portfolio with new
Facebook-based games similar to the already suc-
cessfully deployed Sentiment Quiz (Rafelsberger and
Scharl, 2009). The Sentiment Quiz addressed major
challenges of GWAPs such as how to attract and retain
players, how to ensure the generation of high quality
data, and how to effectively aggregate results.

In the first game (or first task in an integrated
game) players confirm if a new concept candidate is
relevant to the domain. If the concept is not relevant (a
certain level of agreement among users is needed), the
user evaluation terminates and the concept is pruned.
Another game indicates if the connection between the
seed concept and the new concept is correct. If it is
not correct the game lets players suggest the appro-
priate seed concept to connect to. For this task, the
GWAP ranks the seed concepts to select from by the
relation strength from the relation strength matrix.

To use the scarce resource of user feedback op-
timally, we do not re-evaluate concepts or relations
in subsequent intervals, where the number of skipped
intervals depends on inter-player agreement on the re-
spective item.



4 Dynamic Confidence Management

This section introduces the planned confidence man-
agement and trend detection experiments as well as
three data structures that are crucial for tracking
temporal changes and trends: the evidence confi-
dence matrix (Section 4.1), the source impact vector
(Section 4.2) and the relation strength matrix (Sec-
tion 4.3).

4.1 Evidence Confidence Matrix

As already mentioned, our confidence management
and ontology dynamics approach is data-driven and
relies on evidence extracted from heterogeneous
sources, which is then collected into a graph data
structure and also the evidence confidence matrix
(ECM). We distinguish three basic types of evidence
sources: unstructured, social and structured. We have
repeatedly and successfully used the webLyzard suite
of Web mining tools (www.weblyzard.com) for gen-
erating high-quality domain corpora. The result of the
mirroring and domain detection process is a number
of corpora for the respective period: e.g., a US news
media corpus, a British news media corpus, a Fortune
1000 corpus, etc. We will select the level of granu-
larity (e.g., all news media from a country vs. single
news media) according to the number of documents
available. The algorithms apply term extraction meth-
ods such as co-occurrence statistics and Hearst pat-
terns to the corpora (Liu et al., 2005).

To collect evidence from social media we use the
TagInfoService interface of the easy Web Retrieval
Toolkit (www.semanticlab.net/index.php/eWRT) to
get related terms for the label of a seed concept from
sources such as Twitter, Flickr and Del.icio.us (We-
ichselbraun et al., 2010a). Querying the DBpedia
SPARQL endpoint with the seed concept labels and
specific properties such as dcterms:subject, or the use
of Scarlet (Sabou et al., 2008), constitute the struc-
tured data evidence sources.

The total number of evidence sources relates to
the number of extraction methods multiplied by the
number of corpora (for text sources). Examples of
evidence sources (and evidences) for the seed concept
“greenhouse effect” in a climate change ontology are:

• Sentence-level Co-occurrence in Australian News
Media
(“greenhouse effect”

esi−→ “carbon dioxide”),

• Related tags from Twitter
(“greenhouse effect”

esi−→ “petrol”),

• DBpedia-query dcterms:subject

(“greenhouse effect”
esi−→ “kyoto protocol”), . . .

The semantic network connects collected terms
with the seed ontology via directed weighted links.
The ECM is an additional form to store evidence data
and includes a temporal dimension. The system gen-
erates ECMs to represent all possible relations be-
tween a seed concept Cs and a candidate concept Cc.
The ECM contains the observed connection strength
between the two concepts for all evidence sources.
The second dimension is the temporal one. Equa-
tion 1 shows a ECM for seed concept Cs and candi-
date concept (term) Cc with the dimensions evidence
source es and time t and the corresponding confidence
values cesi,t j .

ECMCs,Cc =


ces1,t1 ces1,t2 · · · ces1,tm
ces2,t1 ces2,t2 · · · ces2,tm

...
cesn,t1 cesn,t2 · · · cesn,tm


(1)

The ECM supports a number of trend detection
experiments such as: (i) observe patterns in the ev-
idence data between two concepts on a fine-grained
per evidence source basis, (ii) compare the occurrence
patterns for a new concept/term among multiple seed
concepts, to see the evidence strength between those
and how it evolves, (iii) aggregate evidence sources
(e.g., all news media sources) and trace such patterns
on a higher level, (iv) compare (aggregated) sources
to see which types of sources promote a new concept
at what point in time, (v) study the characteristics of
evidence sources themselves.

4.2 Source Impact Vector

The source impact vector (SIV) contributes to the
weights in the spreading activation network because
its values reflect user generated confidence (quality)
and suggested impact of an evidence source in the
learning process. Evidence sources which tend to pro-
vide low quality terminology should have low impact,
and vice versa. The initial settings stem from heuris-
tics and metrics such as Google PageRank.

User feedback yields an optimized SIV. Neural
network learning techniques such as backpropaga-
tion allow adjusting the weights of the spreading ac-
tivation network to the users’ perception of the do-
main and set the corresponding values to optimize the
source impact vector. To prevent overfitting to a spe-
cific ontology, we plan to keep the SIV within prede-
fined intervals.

Equation 2 presents a SIV for a point in time ti. It
contains the impact values I for evidence sources es j.

SIVti =
[

Ies1 Ies2 · · · Iesn

]
(2)



The dynamic adaptation of the source impact vec-
tors according to user feedback is novel. By introduc-
ing a temporal dimension and storing source impact
values over time, we obtain a source impact matrix.
By exploring this temporal aspect, we can study the
trends in source impact: (i) patterns in the quality of
single evidence sources in a specific domain, (ii) pat-
terns in aggregated views on source impact (e.g., all
social media sources), (iii) patterns across domains to
explore the suitability of specific sources for a certain
domain.

The concept selection and concept positioning
phases have different characteristics, and, therefore,
an evidence source might be better suited to one than
the other. Therefore we plan to experiment with using
two separate SIVs corresponding to support values for
these two tasks.

4.3 Relation Strength Matrix

Spreading activation in the process of concept po-
sitioning yields the relation strength, i.e., the learn-
ing algorithm-based confidence, between all seed and
new concepts in the extended ontology. Additionally
to the application of relation strength values as de-
scribed in Section 3, these data also provide the base
for interesting trend detection experiments when stud-
ied from a temporal viewpoint. The relation strength
matrix (RSM) as given in Equation 3 shows the re-
lation strength values rs for any relation ri j between
seed concept i with new concept j.

RSM =



rsr11t1 rsr11t2 · · · rsr11tn
rsr12t1 rsr12t2 · · · rsr12tn

...
...

rsr21t1 rsr21t2 · · · rsr21tn
...

...
...

rsrmnt1 rsrmnt2 · · · rsrmntn


(3)

The RSM can give interesting insights into the dy-
namics of the domain. A permanent change in learn-
ing algorithm-based confidence (relation strength) be-
tween concepts suggests the meaning of a concept
(especially in taxonomic relations), or its relation
to other concepts has changed in the outside world.
For example, the meaning of the concept “energy
source” might have changed when the predominant
relation between “energy source” and “fossil fuel”
gets weaker over time, and the relation to “alternative
energy” intensifies.

It will then be interesting to examine if user feed-
back is in line with shifts in terminology as computed
by the algorithms, or if users do not perceive these

domain changes. Conversely, if user feedback dif-
fers from the past, but the underlying evidence is un-
changed, then a shift in user perception and concep-
tualization, but not a change in the domain itself, is
indicated.

We will also take an overall view on the charac-
teristics of relations, e.g., is it common in the domain
to have dominant and unambiguous relations between
seed and new concepts, or are there mostly connec-
tions of similar strength from a seed concept to many
new concepts. Experiments will point out if (parts of)
a domain are getting more fuzzy and connected or if
reverse effects occur.

5 DISCUSSION

This position paper presents a framework for learning
lightweight ontologies and studying dynamic confi-
dence values assigned to its various elements. In reg-
ular - e.g., weekly or monthly - intervals, the frame-
work generates ontologies starting from a small seed
ontology by integrating heterogeneous evidence ex-
tracted in the respective period. Spreading activation
algorithms detect new concepts and position them
into the ontology. User feedback with games with
a purpose validates new concepts and relations, and
provides data to manage and optimize the confidence
in specific evidence sources. The main contributions
of the approach are (i) special data structures that fa-
cilitate powerful and fine-grained dynamic confidence
management of ontological elements, (ii) trend detec-
tion in those data structures, referring to input data
(evidence) and the resulting verified ontologies, (iii)
the integration of rapid user feedback cycles, (iv) ex-
periments to measure ontology dynamics characteris-
tics such as change in a domain (because the “world”
has changed) or change in conceptualization. Future
work will focus on the execution of the proposed con-
fidence management and trend detection experiments.
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