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Abstract. Incrementally computed information landscapes are an effective 
means to visualize longitudinal changes in large document repositories. Resem-
bling tectonic processes in the natural world, dynamic rendering reflects both 
long-term trends and short-term fluctuations in such repositories. To visualize 
the rise and decay of topics, the mapping algorithm elevates and lowers related 
sets of concentric contour lines. Addressing the growing number of documents 
to be processed by state-of-the-art knowledge discovery applications, we intro-
duce an incremental, scalable approach for generating such landscapes. The 
processing pipeline includes a number of sequential tasks, from crawling, filter-
ing and pre-processing Web content to projecting, labeling and rendering the 
aggregated information. Incremental processing steps are localized in the pro-
jection stage consisting of document clustering, cluster force-directed place-
ment and fast document positioning. We evaluate the proposed framework by 
contrasting layout qualities of incremental versus non-incremental versions. 
Documents for the experiments stem from the blog sample of the Media Watch 
on Climate Change (www.ecoresearch.net/climate). Experimental results indi-
cate that our incremental computation approach is capable of accurately gene-
rating dynamic information landscapes. 

Keywords: Information visualization, information landscape, incremental clus-
tering, multi-dimensional scaling. 

1 Introduction 

These days we are confronted not only with constantly growing, but also with conti-
nuously and often rapidly changing “big data” repositories. Information Landscapes 
represent a powerful visualization technique for conveying topical relatedness in large 
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document repositories [20]. Yet, the concept of information landscapes does only 
allow for visualizing static conditions. In previous research, we have introduced dy-
namic topography information landscapes [29] to address both (i) topical relatedness 
and (ii) visualization of data changes. As such, dynamic landscapes have proved valu-
able in enterprise scenarios involving visual knowledge discovery in large, dynamic 
text repositories, where they have been applied for tracking of topical relationships 
and trends in media and patent databases [30].  

Dynamic topography information landscapes are visual representations based on a 
geographic map metaphor where topical relatedness is conveyed through spatial prox-
imity in the visualization space with hills representing agglomerations (clusters) of 
topically similar documents. Hills are labeled with dominant terms from the underly-
ing documents to facilitate the users’ orientation. When a document repository 
changes over time, e.g. new documents are added or old documents are removed, the 
overall topical structure changes as well. Dynamic information landscapes convey 
these changes as tectonic processes which modify the landscape topography accor-
dingly. In the process of generating information landscapes, high-dimensional data is 
projected into a lower-dimensional space. Yet, existing dimensionality reduction ap-
proaches lack several aspects including (i) support for incremental computation, (ii) 
scalability with respect to data set size and high-dimensionality (iii) and generation of 
aesthetically pleasing layouts which are necessary for visual applications. 

This paper presents an incremental, scalable algorithmic approach for computing 
dynamic topography information landscapes capable of visualizing dynamically 
changing text repositories. Our incremental processing pipeline is introduced in Sec-
tion 3 and includes implementation details of text preprocessing, projection (dimen-
sionality reduction), labeling and rendering stages where the projection part combines 
document clustering, cluster force-directed placement and, an improved approach to 
fast document positioning. We conclude this section by visualizing a temporal se-
quence of eight incrementally computed information landscapes, which reflect weekly 
changes in the underlying document set. In Section 4, we experimentally verify our 
approach’s runtime behavior which we discuss only in theory in Section 3. In addi-
tion, we evaluate our incremental computation framework by comparing stress values 
between incrementally and non-incrementally computed layouts. Documents for these 
experiments are taken from the environmental blog sample of the Media Watch on 
Climate Change [16], a Web content aggregator on climate change and related envi-
ronmental issues. Our experimental results show that the incremental computation 
approach yields not only comparable, but even slightly better stress values and there-
by indicate our framework’s validity. 

2 Related Work 

Information landscapes are commonly used to visualize topical relatedness in large 
document repositories, for example in Krishnan et al. [20] and Andrews et al. [1]. 
Static landscape visualizations, however, cannot convey changes. ThemeRiver [13] is 
a visual representation designed to represent changes in topical clusters, but it cannot 
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express relatedness between documents or topical clusters. Visualization of topical 
changes through information landscapes with dynamic topographies were proposed in 
Sabol et al. [28]. An approach suitable for larger data sets was demonstrated in [27]. It 
relies on 3D acceleration for animated morphing of landscape geometry, which makes 
it unsuitable for Web applications. However, the performance of the incremental algo-
rithms remains unclear as it was not evaluated or compared with a non-incremental 
variant.  

Visualization techniques in general have to cope with today’s ever-growing data 
production and data consumption. Incremental algorithms provide the required func-
tionality to process big data. Incremental algorithms do not recalculate their internal 
model from scratch for newly arriving data items and are thus capable of efficiently 
handling and seamlessly integrating continuously changing or growing data. In the 
context of generating dynamic information landscapes we review work on incremen-
tal dimensionality reduction and incremental clustering techniques. 

Incremental Dimensionality Reduction. Dimensionality reduction techniques trans-
form high-dimensional data into low-dimensional data seeking to lose as little infor-
mation as possible. This transformation has turned out to be particularly useful in the 
field of visualization for projecting the high-dimension data into the low-dimensional 
visualization space. To face the growing amount of data, incremental variants have 
been developed usually on top of batch methods. Incremental unsupervised tech-
niques include multi-dimensional scaling (cf. [4]), singular value decomposition (cf. 
[31]), principal component analysis (cf. [2]), random indexing (cf. [18]) or locally 
linear embeddings (cf. [19]). Unsupervised methods are effective in finding compact 
representations, but ignore valuable class label information of the training data. In-
cremental supervised techniques are thus better suited for pattern classification tasks. 
Representatives of incremental supervised dimensionality reduction techniques in-
clude linear discriminant analysis (cf. [23]) or subspace learning (cf. [34]).  

Incremental Clustering. Incremental clustering algorithms can be traced back to the 
1970s, cf. Hartigan’s leader algorithm which requires only one pass through the data 
[12], Slagle’s shortest spanning path algorithm [33] or Fisher’s COBWEB system, an 
incremental conceptual clustering algorithm [9]. The COBWEB system, for example, 
has been successfully applied to support fault diagnosis or bridge design. Inspired by 
COBWEB, Gennari et al. proposed the CLASSIT [11] system which is capable of 
handling numerical data sets. In [5], the authors introduced an incremental clustering 
algorithm for dynamic information processing. In dynamic databases there is a con-
stant adding or removing of data items over time. The idea is that these changes 
should be recognized in the generated partition without affecting current clusters. In 
the late nineties, several incremental clustering algorithms have been presented in-
cluding BIRCH [35], incremental DBSCAN [8] to support data warehousing or Ribert 
et al.’s clustering algorithm to generate a hierarchy of clusters [26]. Incremental clus-
tering of text documents has been conducted as a part of the Topic Detection and 
Tracking initiative [1] to detect a new event from a stream of news articles. 

To compute dynamic topography information landscapes in an incremental and 
thus timely efficient manner, we integrate and combine incremental aspects into the 
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generation process. (i) For clustering, we apply a simple, spherical k-means [7] and 
use previously computed partitions of the document set as initial state for incremental 
computations. (ii) We introduce an improved approach for document positioning 
which is essentially based on a simple spring forces-based model (cf. [10]) since we 
observed that landscapes generated with standard positioning method displayed geo-
metrical edges. (iii) We use a force-directed placement (FDP) algorithm [10] for pro-
jecting these high-dimensional cluster centroids into a 2D visualization space. The 
parameters of FDP-based methods provide significant control over the layout, which 
allows them to deliver more pleasing layouts than traditional methods. The FDP algo-
rithm is intrinsically incremental when applied on a previously computed stable 
layout. Re-applying FDP on a previous layout of centroids with modified similarities 
will produce a new layout closely resembling the previous one. 

3 Algorithmic Approach 

In this section we introduce and describe our approach to generating dynamic infor-
mation landscapes. Fig. 1 depicts the overall workflow, which can be grouped into 
three main components: (i) First (shown in green), we prepare an augmented docu-
ment-term matrix by combining information from keyword relevance and word fre-
quency tables. (ii) In a second step (cyan), we cluster and position the documents. We 
use the k-means clustering algorithm to partition the documents into topically related 
clusters. We then employ force directed placement to project clusters centroid posi-
tions into 2D visualization space, and apply a fast method for positioning documents 
in 2D based on cluster positions. (iii) In the last step (magenta), we use the docu-
ments’ layout position to model a topical landscape which is essentially an elevation 
matrix on a 2D grid. A coloring scheme is used to construct landscape surface images. 
A peak detection algorithm then finds major peaks (hills) and collects underlying 
documents to compute text descriptors for labeling the peaks. Note that previous 
computation results are used as initial state for incremental processing (in orange). 
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Fig. 1. Workflow diagram for the incremental landscape computation framework 
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Details on these three main components will be provided in the following subsec-
tions 3.1 to 3.3, followed by a separate description of the architecture’s incremental 
aspects in Section 3.4. 

3.1 Document-Term Matrix Generation 

Prior to the beginning of the computation, the raw textual data to be analyzed is ga-
thered via a web crawler, then converted and annotated into the content repositories 
based on previous research [16], [32]. We utilize our experiences with webLyzard, an 
established and scalable media monitoring and Web intelligence platform 
(www.weblyzard.com), to generate the document keyword relevance table (1A) and 
the document word frequency table (1B).  

Using the information from 1A and 1B, we create the document keyword matrix 
(2A) as well as the document word matrix (2B). Both matrices are then linearly com-
bined into one augmented document term matrix (3) with unique terms IDs. 

3.2 Clustering and Projection 

The incremental clustering algorithm (4) takes the document term matrix (3) as input 
and outputs (i) a centroid-to-centroid similarity matrix (5A), (ii) a document-centroid 
relationship graph (5B), and (iii) a documents-to-centroids similarity matrix (5C).  

In incremental mode the k-means algorithm module is initialized by the previously 
computed clustering result (1C). The centroid positioning algorithm (6) uses results 
(5A) and (5B). The algorithm can be initialized with previous centroid positions (1D) 
for the incremental case, or by assigning random positions for the non-incremental 
computation. The centroid positions (6) and the document to centroid similarity ma-
trix (5C) are then used for computing the document positions (7).  

Document Clustering. We apply the spherical k-means algorithm [7] to partition the 
documents into topical clusters. The k-means algorithm is known to be highly sensi-
tive to the initial guess of the cluster partitions and the number of partitions. To over-
come this sensitivity, we use the k-means++ seeding method [3]. In addition, we split 
and merge the clusters [22] for deducting the number of clusters within the limit of 
specified minimum and maximum bounds. As human cognition puts certain limits to 
conceiving visualizations, we limited the number of clusters to account for usability. 
We observe that setting the minimum and maximum number of cluster bounds to be 
30 and 40, respectively, result in meaningful and aesthetically pleasing information 
landscapes. Therefore, in subsequent iterations we perform the splitting of large clus-
ters to obtain higher cluster cohesion as well as the merging of small, similar clusters, 
according to improvements using Bayesian Information Criterion [24].  

The algorithm’s runtime complexity is O(mnd), where m is the number of clusters, 
n is the number of documents, and d is the dimensionality of the term space. Since 
m<<n in our case, and according to Heaps' law [14], d scales logarithmically with n, 
the clustering part of our algorithm is considered to scale with O(n log(n)).  
For incremental clustering, we use previously computed partitions of the document set 
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as the initial state. For a fixed number of documents to be clustered incrementally, old 
documents are removed from their respective clusters and new documents are added to 
the most similar cluster centroid. Afterwards, additional k-means iterations, including 
the split and merge procedure, are performed to further refine the initial partition.  

Cluster Positioning. The partitioned set of documents is represented by the high-
dimensional centroids of the respective clusters. We use a force-directed placement 
(FDP) algorithm [10] for projecting these high-dimensional cluster centroids into a 
2D visualization space. The idea is that attractive forces pull together topically similar 
centroids while dissimilar centroids are repulsed. Spatial closeness between centroids 
thus relates to their topical closeness. The FDP algorithm is known to produce accu-
rate and aesthetically pleasing layouts. Most FDP variants scale poorly, e.g. O(m3). 
Yet, as in our approach m<<n, and because there is a fixed upper limit on m, in our 
case 40 clusters, the runtime complexity of cluster positioning may be considered 
constant. As stopping criterion for the FDP algorithm, we used two parameters: (i) a 
fixed maximum number of iterations, and (ii) the local minima for the stress value 
[21]. The most attractive feature of the FDP algorithm is that it is intrinsically incre-
mental when applied on a previously computed stable layout. The impact of incre-
mental clustering is reflected in similarities between cluster centroids. When changes 
in the data set are small, the similarities between the centroids will also change by a 
small proportion. Re-applying FDP on previous layout of centroids with modified 
similarities will produce a new layout closely resembling the previous one.  

Document Positioning. In an earlier version of the algorithm [29], we used an algo-
rithm based on Delaunay triangulation of centroid positions in the 2D space. The most 
similar triangle was chosen based on the similarities between the document and the 
most similar centroids, and the document position was assigned using Barycentric 
coordinates in O(m) time, m being the number of centroid vertices.  

Unfortunately, we observed that landscapes generated with this positioning method 
reflected geometrical edges; i.e., documents were positioned in straight lines. To 
maintain the viewing experience of a realistic landscape without artifacts, and to 
achieve a linear running time, we introduce an improved approach for fast document 
positioning which is essentially based on a simple spring forces-based model (cf. 
[10]). In this model we assumed that the document, in two dimensions, is attached to 
each centroid, in two dimensions, by a spring having a spring constant proportional to 
the similarity between the document and the centroid in the n-dimensional space. 

If R1, R2, R3,…, Rm are the given position vectors of all m centroids and si1, si2, 
si3,…, sim are the given similarities of the ith document with m centroids respectively, 
then an analytical solution of the equilibrium conditions for Hooke’s law forces be-
tween  ith document and all centroids eventually formulate the position of the  ith doc-
ument as ri = ∑k=1..m sik Rk / ∑k=1..m sik . This simple algorithm makes our computation 
for document positioning linear in time and, in contrast to [29], without any overhead 

3.3 Landscape Creation and Peak Labeling 

With document layout positions at hand, we compute an elevation matrix (8) that 
represents an information landscape model. We then utilize this matrix to identify 
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peak locations, heights and a list of documents related to the peak (9). The peak detec-
tion employs a kernel window convolution over the landscape model. The peak label 
assignment module (10) determines the peak’s labels by using the list of documents 
under the peak for querying and comparing with the semantically tagged reference 
corpora (1E), which is continuously refined by the webLyzard platform. Finally, the 
assigned labels are positioned on the information landscape surface images (12), 
computed based on the coloring scheme (8) and the heuristic labeling algorithms of 
the landscape image rendering module (11). 

Landscape Modeling. Information landscapes with specific resolutions are modeled 
as elevation matrices of the same resolution. A document is thought of as a small 
Gaussian peak at the corresponding position on the underlying matrix cells. The influ-
ence of a document on a matrix cell location is reflected by the value of Gaussian 
density at that location. Thus the height and the asymptotic radius of the Gaussian 
peak reflect the document’s influence in the landscape. We further assume a docu-
ment has a fixed influence on its own location on the matrix cell. The densities of all 
documents at particular location are superimposed, adding to the elevation values of 
the underlying matrix cells.  

Peak Detection. A kernel window-based peak detection algorithm is used to detect 
the significant peaks of the landscape (cf. [15], [25]). The average of the convolution 
of the window with the elevation matrix is compared with the center value of the ma-
trix cell. A peak is assumed if the center value is higher than the average convolving 
value. After detecting the significant peaks, documents are assigned to their nearest 
peak by using the minimum Euclidean distance criterion in the 2D layout.  

Label Computation. The term distribution in the set of documents in the vicinity of a 
peak is compared with a reference distribution. A chi-square test of significance with 
Yates’ correction determines over-represented terms. The term co-occurrence analy-
sis, based on pattern matching algorithm, along with trigger phrases based on regular 
expressions, is used to identify the frequently appearing text fragments within the 
same sentences and within the documents [16], [32]. The redundancy of nouns’ singu-
lar and plural forms and synonyms in the resultant list of labels are removed by using 
a combination of regular expression queries and WordNet library lookup. 

Map Generation and Label Placement. In the final step, colors are assigned to the 
image pixels depending on the density of the corresponding density matrix cells. In 
our scheme of colors the blue is used to express lowest density, then green and brown, 
and finally light gray is used for highest density. The resulting landscape surface im-
age resembles a geographic map with peaks at areas, where document density is large, 
and oceans or valleys, where document density is low. Finally, a heuristic point fea-
ture label placement algorithm [6] is used with the labeling quality evaluation in the 
following basic rules: (i) No overlap of a label with other labels and the image boun-
dary. (ii) No overlap of a label and another peak location. (iii) Each label is placed 
among the four possible labeling rectangular spaces of the peak locations. (iv) At 
most five labels for a peak location can be assigned. 
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3.4 Incremental Computation 

Computing incremental landscapes at first requires an initial computation of a land-
scape. We apply our algorithm to an initial data set where the documents’ layout posi-
tions are saved for future use. Whenever the data set changes, the incremental  
k-means algorithm is initialized with a previously computed stable partition, i.e. with 
the old locations for the new centroids. The ongoing process of removing old docu-
ments and adding new documents to the most similar clusters leads to several k-
means iterations for the next stable partition. The successive iteration of FDP will 
stop at the first local minima for the average stress value.  

 

Fig. 2. A sequence of incrementally computed landscapes from environmental blogs, visualiz-
ing 2,000 documents each, reflects weekly changes from Sept 30th, 2011 to Oct 21th 2011. 
Approximately 10% of the data set changed between each individual step resulting in seamless 
transformations of topography portions, while the overall structure remains stable. Rising hills 
indicate the emergence of new topics (images 1, 2 and 3); shrinking hills a fading of topics 
(image 4). Hill movements towards or apart from each other indicates converging or diverging 
topical clusters. As the incremental algorithm seamlessly integrates a stream of continuous 
changes, the user retains orientation through recognition of unchanged parts of the topography. 

To acknowledge the growing number of documents to be processed by state-of-
the-art web intelligence applications, we briefly discuss scalability issues in this sec-
tion. Many processing steps of our algorithmic approach scale linearly (or even better) 
with the number of documents n. Yet, the dominating factor remains with the cluster-
ing, so the time complexity of the entire landscape generation process is O(n log(n)). 
This matches the performance of other scalable algorithms, such as [17], which  
however do not provide support for incremental layout computation. While we have 
experienced with data set sizes up to 20.000 documents, we still need to conduct 
large-scale experiments to make reliable statements with respect to scalability. 
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4 Evaluation 

For evaluating the incremental computation framework we computed ten consecutive 
landscapes for 2000 documents from the environmental blog data set of the Media 
Watch on Climate Change [16], a Web content aggregator about climate change and 
related environmental issues that serves static versions of the information landscapes 
presented in this paper as part of a multiple coordinated view representation. Each 
week new documents are gathered via the webLyzard crawler. For each incremental 
step, new documents replace an equal number of old documents from the set of 2000 
documents. Each new incremental computation is based on the previous one. For 
comparison, we compute the landscape for the same document set in a non-
incremental manner. The projection quality in both landscapes is then evaluated using 
stress values [21].  

However, the stress value computation requires the computation of distances (dis-
similarities) for all pairs of documents in high-dimensional space, which is quadratic 
in time. To speed up the process and to be capable of handling large data sets, we 
introduce a faster variant which approximates the true stress values. We used geome-
tric mean of the similarity of one document with the centroid of the second document 
and the similarity of second document with the centroid of the first document as an 
estimated value of similarity between both documents. All measurements were per-
formed on a 2.66GHz Intel Xeon X5355 CPU with 8GB of memory, running 64-bit 
versions of Linux and Java v1.6.0_29. 

The resulting stress values for both computation types are summarized in Fig. 3 
(left). The initial sample of 2000 documents was taken from September 30th, 2011. 
Every week this document selection changes, i.e. new documents arrive whereas the 
same number of documents, the oldest ones, are removed resulting in a set of constant 
size. Stress values for both computation types are decreasing while values for the 
incremental computation appear to be slightly lower than for the non-incremental 
computation. In the non-incremental case, the curve exhibits more fluctuations, e.g. 
the peak on November 4th. In our opinion this behavior is due to k-means’ and FDP’s 
sensitivity to initial conditions. We hypothesize that stress values for the incremental 
computations are lower because these weekly incremental changes have the potential 
to shake the FDP process out of local minima so that the performance can improve. 
The experimental results corroborate that our algorithmic approach is capable of accu-
rately generating dynamic information landscapes in an incremental manner. 

To examine the algorithm’s execution times for different data set sizes, we experi-
mentally verified the runtime estimates for individual processing steps given in Sec-
tions 3.1 to 3.3. Fig. 3 (right) summarizes timing results of landscape computations 
for eight different document set sizes ranging from 2000 to 16000. Processing steps 
include document-term matrix preparation (A), clustering (B), document positioning 
(C) (including cluster positioning with FDP which is in constant time for fixed num-
ber of clusters) and peak detection, label positioning and image construction (D). 
Graph (T) reflects the total runtime for generating dynamic topography information 
landscapes for different data set sizes. According to Fig. 3 (right), the clustering step 
(B) appears to be the algorithm’s runtime bottleneck.  
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Fig. 3. Left: The stress values (y-axis) for incrementally computed documents layout and for 
non-incrementally computed documents layout over a period of 10 weeks; Right: Run times in 
seconds (y-axis) for landscape computation framework with different document sets (x-axis) 

5 Conclusion 

We have introduced and evaluated an incremental approach to generating dynamic 
topography information landscapes, and applied this approach to visualize the content 
dynamics of environmental blogs. Our method combines well-known algorithmic 
approaches, such as k-means clustering and force-directed placement, and introduces 
an improved method for fast document positioning which relies on previously com-
puted cluster centroid positions. In experiments, we have compared the quality of 
incrementally and non-incrementally computed layouts where the incremental version 
achieves not only comparable, but even slightly superior stress values.  

By capturing changes in textual data repositories such as news and social media 
archives, and by revealing the emergence and decay of major topics in such reposito-
ries, an incremental version for computing information landscapes extends the reper-
toire of existing Web intelligence and social media analytics applications such as the 
Media Watch on Climate Change (www.ecoresearch.net/climate). 

Although some of incremental ideas are discussed in [27, 28, 29, 30], this paper 
contributes by presenting a novel document positioning method and evaluates docu-
ment positioning improvements on subsequent incremental landscape computations. 

Future work will focus on improving layout quality by utilizing semantic informa-
tion in the process of calculating similarities between documents. These semantics 
will help us to better handle linguistic concepts such as synonymy and thus to capture 
more implicit, meaningful associations amongst textual resources.  
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