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Abstract

By providing interoperability and shared meaning across actors and
domains, lightweight domain ontologies are a cornerstone technology of
the Semantic Web. This chapter investigates evidence sources for ontol-
ogy learning and describes a generic and extensible approach to ontology
learning that combines such evidence sources to extract domain concepts,
identify relations between the ontology’s concepts, and detect relation la-
bels automatically. An implementation illustrates the presented ontology
learning and relation labeling framework and serves as the basis for dis-
cussing possible pitfalls in ontology learning. Afterwards, three use cases
demonstrate the usefulness of the presented framework and its application
to real-world problems.

1 Introduction

Ontologies, which are commonly defined as explicit specifications of shared con-
ceptualizations (Gruber, 1995), provide a reusable domain model which allows
for many applications in the areas of knowledge engineering, natural language
processing, e-commerce, intelligent information integration, bio-informatics etc.

Not all ontologies share the same amount of formal explicitness (Corcho,
2006), nor do they include all the components that can be expressed in a for-
mal language, such as concept taxonomies and various types of formal axioms.
Therefore, ontology research distinguishes lightweight and heavyweight ontolo-
gies (Studer et al., 1998). The creation of such conceptualizations for non-trivial
domains is an expensive and cumbersome task, which requires highly specialized
human effort (Cimiano, 2006). Furthermore the evolution of domains results in
a constant need for refinement of domain ontologies to ensure their usefulness.

Automated approaches to learning ontologies from existing data aim at im-
proving the productivity of ontology engineers. Buitelaar et al. (2005) organize
the tasks in ontology learning in a set of layers. Especially in ontology learn-
ing from text, lexical entries LC are needed to link single words or phrases to
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concepts C. Synonym extraction helps to connect similar terms to a concept.
Taxonomies HC provide the ontology’s backbone. Non-taxonomic relations R
supply arbitrary links between concepts. Finally, axioms are defined or acquired
to derive additional facts.

Data sources for ontology learning typically include unstructured, semi-
structured and structured data (Cimiano, 2006). Ontology learning from struc-
tured data consumes information sources such as database schemas or existing
ontologies – it is also called lifting as it lifts or maps parts of existing schemas
to new logical definitions. Since most of the available data is unstructured or
semi-structured, a major research focus over the last two decades has been the
extraction of domain models from natural language text through a variety of
methods. Cimiano (2006) presents an extensive overview of ontology learning
methods from unstructured data. Many of the methods involve corpus statistics,
such as co-occurrence analysis (Liu et al., 2005), association rules (Maedche et
al., 2002), latent semantic analysis based techniques for the detection of syn-
onyms and concepts (Landauer & Dumais, 1997), or the application of kernel
methods for example to classify semantic relations (Giuliano et al., 2007).

A lot of work in the field, especially for tasks that involve term cluster-
ing, exploits Harris’ distributional hypothesis (Harris, 1968), which states that
terms or words are similar to the extend that they occur in syntactically sim-
ilar contexts. Besides corpus statistics, many authors apply linguistic parsing
and linguistic patterns in ontology learning. Building on the seminal work of
Hearst (Hearst, 1992), patterns support taxonomy extraction (Liu et al., 2005),
the detection of concepts and labeled relations in combination with the applica-
tion of Web statistics (Sánchez-Alonso & Garćıa, 2006), or Web-scale extraction
of unnamed relations (Etzioni et al., 2008).

The integration of Semantic Web resources has become quite popular in
ontology learning in the recent years. In the presented modular and extensi-
ble framework, we use structured information to apply semantic constraints on
learned ontological elements, for example in the task of detecting non-taxonomic
relations where the system penalizes suggested relation label candidates conflict-
ing with the constraints defined. Gracia et al. (2006) describe an unsupervised
approach that dynamically uses online ontologies for word-sense disambigua-
tion. d’Aquin, Motta, et al. (2008) provide the Scarlet service for discovering
relations between two concepts by harvesting the Semantic Web. Similarly,
Aleksovski et al. (2006) extract relations between terms in background knowl-
edge. Alani (2006) proposes a method for ontology construction by cutting and
pasting ontology modules from online ontologies.

Domain text often misses some of the terms important to a particular do-
main, since those terms and associated concepts are assumed to be common
ground shared by the authors and readers of documents. Additional resources,
such as collective intelligence in the form of folksonomies (Specia & Motta,
2007), social networking or micro blogging systems, as well as online ontologies
are rich sources to augment knowledge expressed in textual resources. Some au-
thors (Mika, 2007; Heymann & Garcia-Molina, 2006; Tang et al., 2009; Schmitz,
2006) build ontologies solely based on information gathered from social sources.
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The presented architecture uses data from social sources together with other
evidence with the intention to capture the latest terminology of evolving do-
mains (Angeletou et al., 2007) and to integrate background knowledge about
the domain from external data sources.

The remainder of this chapter is structured as follows: Section 2 introduces
the three evidence sources utilized in the presented ontology learning framework.
Section 3 presents the major steps and methods applied in the ontology building
process for (i) extracting terms, relations, and relation labels as well as (ii)
applying ontological constraints. Section 4 demonstrates the potential of the
ontology learning architecture by means of real-world use cases in three different
domains (tourism, waste management, climate change). The chapter closes with
an outlook and conclusions in Section 5.

2 Data Sources

Methods for ontology construction rely on evidences gathered from relevant data
sources such as domain documents, online communities and ontology reposito-
ries. Generally speaking, one can distinguish between (i) in-corpus evidence
sources which mostly rely on unstructured data such as domain relevant text
and Web documents (Section 2.1) and (ii) external sources which provide an
outside view of the domain by including social (Section 2.2) and structured
(Section 2.3) data in the ontology learning process.

2.1 Unstructured Evidence Sources

From unstructured evidence sources (e.g. relevant Web documents), automated
ontology learning systems can extract candidate terms by means of information
extraction and text mining techniques - e.g., significant phrase detection, co-
occurrence analysis and trigger phrases.

Significant phrase detection determines bi- and trigram terms in the domain
corpus by comparing the number of a term’s observed occurrences to the num-
ber of expected occurrences under the hypothesis of independent terms using
the log likelihood ratio (Hubmann-Haidvogel et al., 2009). Co-occurrence anal-
ysis locates these terms and unigrams in the domain corpus and compares their
frequency in sentences and documents containing seed ontology concepts with
their general distribution in the corpus. A chi-square test with Yates’ correction
for continuity (Yates, 1934) suggests a ranked list of terms, which occur signif-
icantly more often with seed ontology concepts, for inclusion into the domain
ontology. Trigger Phrases (Grefenstette & Hearst, 1992; Joho et al., 2004) yield
concept candidates and relations by matching text fragments that indicate a
particular relationship (e.g. hyponym, hypernym and synonym) between terms
in the domain corpus.
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2.2 Social Evidence Sources

Social evidence sources query Web 2.0 applications such as tagging systems,
social networking and micro-blogging services to retrieve candidate concepts for
the extended ontology based on a set of given seed ontology terms.

Delicious1 and Flickr2, for example, provide an API to retrieve the number
of entities which have been labeled with a specific tag (= tag popularity) and to
determine related tags. Technorati3 does not offer such an API. Therefore, we
had to implement a method to compute related tags based on the tags in the
top 100 blogs returned for a target tag. The same strategy has been applied to
Twitter4.

Comparing tag popularities by applying similarity measures such as the dice
coefficient or pointwise mutual information yields suggestions for relations be-
tween tags.

2.3 Structured Evidence Sources

Structured evidence sources include repositories such as DBpedia (Bizer et al.,
2009), Freebase5 and OpenCyc6, which provide ontological data including con-
cepts, relations and instance data; their integration is the goal of the Linking
Open Data7 initiative. Several search engines such as Swoogle8 specialize in
sharing ontologies via standardized formats, others like Sindice9 concentrate on
providing triple-based instance data from RDF and microformats. Many en-
gines offer both conceptual data as well as instances; e.g., Watson (d’Aquin,
Sabou, et al., 2008), Falcons10, and SWSE11.

3 Method

Figure 1 outlines the process of constructing lightweight ontologies. In the initial
step, domain exoerts identify seed terms or a seed ontology. The system then
detects relations between these terms, and identifies labels for these relations.
These steps are independent of each other and can be performed using different
extension frameworks that use the process outlined in Figure 1 to learn concepts,
relations and relation labels.

Evidences from unstructured, structured and social sources help identify pos-
sible candidates for integration in the domain ontology. Methods such as spread-

1www.delicious.com
2www.flickr.com
3www.technorati.com
4www.twitter.com
5www.freebase.com
6www.opencyc.org
7esw.w3.org/topic/sweoig/taskforces/communityprojects/linkingopendata
8swoogle.umbc.edu
9www.sindice.com

10iws.seu.edu.cn/services/falcons
11swse.deri.org
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Figure 1: A generic ontology learning process

ing activation (Crestani, 1997) or the vector space model (Salton et al., 1975)
integrate these evidences and provide a ranked list of candidates. Applying
domain constraints on the collected data penalizes entries violating ontological
constraints. Domain experts help to refine and optimize the ontology learning
process by providing feedback on the suggested concepts, relations, and relation
labels (Figure 1). The following section will outline each step of the learning
process in more detail and describe our implementation of the proposed ontol-
ogy building methdo, which comprises (i) the framework introduced in Liu et al.
(2005) for term extraction and relation detection, and (ii) the relation labeling
component presented in Weichselbraun et al. (2010), which applies constraints
to ensure that its suggestions are consistent with the domain model.

3.1 Term Extraction

Figure 2 presents an implementation of the first two steps in the ontology con-
struction process outlined above which follows Liu et al. (2005).

The ontology extension architecture assembles evidences from unstructured
data sources such as Web pages, blogs and media archives. Plugins extract
evidences such as co-occurring terms, Hearst patterns and WordNet relations
from this data and forward them to the evidence integration component. Social
sources such as Delicious, Flickr, Twitter and Technorati could be integrated in
this step as well.
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Figure 2: Ontology learning framework using spreading activation for evidence
integration (Liu et al., 2005)

seed term evidence candidate term
climate change wl:coOccurs carbon dioxide
energy sources wl:meronym oil
energy wl:hyperonym renewable energy
climate change wl:delicious gas

Table 1: Example evidences collected by the ontology learning framework

The system then collects all evidences as RDF statements in a semantic
network as illustrated in Table 1. Reification adds relation meta data such as
significance values, number of occurrences and weights to the suggested con-
cepts.

The left site of Figure 3 shows an example entry for the term climate change,
which co-occurs with carbon dioxide with a significance of 12.982 according to
a Chi-squared test with Yates correction.

Liu et al. (2005) use spreading activation to transform the data collected
in the semantic network into a ranked list of candidate terms for integration
in the domain ontology. Per evidence source heuristics translate evidences into
spreading activation weights and build a spreading activation network which
will be used for the ranking process. The subjects of the statements collected in
the semantic network are transformed into sources, the objects into sinks and
evidence type and annotations into the appropriate weights (Figure 3, for details
see Liu et al. (2005)). Activating the source nodes yields activation energy levels
for the collected evidences which correspond to their ranking resulting from the
evidence integration step.

Angeletou et al. (2007) note that the integration of structured and social
evidences introduces new and evolving vocabulary into the domain ontology.
External sources also cause the problem of including unrelated terms, or terms
that are irrelevant in the context of the ontology. Figure 4 provides such an
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Figure 3: Transformation of RDF statements to spreading activation weights.

example. Terms which are connected with bold lines to other concepts have been
determined by a social source (Delicious). Most of the included vocabulary such
as methane, environment, greenhouse, etc. is intuitive, but the relations cooling
→ overclocking and ice → machine clearly introduce terms that are irrelevant
in this particular context. One potential strategy to prevent the inclusion of
such concepts is the use of a disambiguation process, which includes additional
context terms for ambiguous seed terms. The importance of a proper selection
of social and structured evidence sources should not be underestimated. For
instance, including Flickr into the extension process of an ontology which focuses
on abstract concepts would probably not be an excellent choice, although the
impact of a single source might be reduced by combining multiple social and
structured sources.

Another risk of external sources is that they might lead to shifts in the
ontology’s focus. Therefore, it is extremely important to balance in-corpus
sources and external sources and to include safeguards, such as rules which
enforce a certain relationship between external and internal concepts, which
ensure a proper focus of the extended ontology.

3.2 Relation Detection

The relation detection process (step 2 in Figure 1) takes concept pairs and pop-
ulates a semantic network with evidences such as relation types suggested by
certain patterns (Hearst, 1992; Joho et al., 2004), subsumption analysis (Sander-
son & Croft, 1999) and grammatical relationships between the terms. It is even
possible to use the semantic network from the concept detection step for this
process.

Evidence specific transformation heuristics translate this data into spread-
ing activation weights (Section 3.1). Subsequently, an iterative process acti-
vates new concepts and creates a relation to the concept with the semantically
strongest relation (= the relation with the highest share of the activation energy
from the new concept). Depending on the use case, specific preference relations
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Figure 4: Extended ontology based on new terms from Delicious as an example
of social evidence sources.

might be limited to seed ontology concepts, or links between new terms might
be promoted.

Currently, the relation detection component only detects the strongest re-
lation between the candidate term and the other terms in the ontology. Using
cut-off levels and additional heuristics will allow the detection of multiple rela-
tions and provide a more fine-grained control over the relation detection process.

3.3 Relation Labeling

Figure 5 presents the relation labeling approach (step 3 in Figure 1) introduced
in Weichselbraun et al. (2010) which follows the generic process illustrated in
Figure 1.

Based on a set of candidate relations, which are formally described in a rela-
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tion description ontology, the method starts extracting evidences from domain
relevant documents which contain the subject and the object participating in
the relation. The relation labeling prototype introduced in Weichselbraun et al.
(2010) only considers verbs or verbs together with prepositions as evidences. Fu-
ture versions might consider other part-of-speech tags in the evaluation as well.
A vector space model is used to integrate the data – every evidence collected
corresponds to a position in the vector space model (Figure 5).

Figure 5: Learning relation labels (Weichselbraun et al., 2010).

Applying the evidence collection process to known relations defined in the
relation description ontology yields vector space representations (centroids) for
those known relation labels. The label of newly acquired and therefore unlabeled
relations is determined by choosing the label of the semantically closest centroid
based on the vector space model with the cosine similarity measure.

3.4 Constraints

In a final step, the proposed process uses constraints to ensure the consistency
of the generated ontology, and to refine the ranking of choices based on their
conformance with these constraints.

For applying domain and range restrictions (as defined in the relation de-
scription ontology) to relation candidates, a concept grounding using an external
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ontology such as OpenCyc has proven to be beneficial as it allows constraints
based on more general concepts such as organization, person, etc. Currently we
verify domain, range and property restrictions by enforcing relation label sugges-
tions which fulfill these constraints and penalizing elements violating them. The
refined ranking is the base for deciding on the concepts, relations and relation
labels to include in the domain ontology.

4 Use Cases

This chapter presents three real-world use cases which successfully applied the
ontology learning framework introduced in this chapter. The use cases gener-
ate ontologies that reflect the knowledge contained in a given corpus. Since
knowledge representation experts are not the primary target audience for the
resulting structures, the ontologies only contain taxonomic relations indicated
by arrows as well as an abstract “related” (r) type to indicate non-taxonomic
relationships between terms.

4.1 Tourism Destinations

Dickinger et al. (2008) analyze news media coverage to acquire and structure
tourism knowledge using ontology learning. They apply contextual filtering to
differentiate between general and tourism-specific news media coverage.

Our ontology learning process extends an ontology of six seed concepts (the
black terms in Figure 6) to a lightweight domain ontology which comprises 30
concepts, which were extracted from the input corpus (Figure 6).

Most of the terms and relations included by ontology learning are straightfor-
ward to interpret. Nevertheless, there are also a number of unexpected relations
such as culture tourism → handcart, air travel → snowcam which where added
due to a special coverage of certain Web pages (e.g. the CNN and USA Today
coverage on “Mormon Hand Track” referring to a cultural tourism attraction).
From the ontology engineering point of view, the inclusion of such relations is
not necessarily a good thing and might be avoided by (i) using a larger input
corpus which reduces the impact of singular events, or (ii) by adding additional
evidence sources such as the ones suggested in Section 2.2 and Section 2.3.

4.2 Communication in Waste Management

Pollach et al. (2009) investigate the Internet coverage of solid waste management
on media sites, corporate Web sites and on the Web pages of non-governmental
organizations. The authors extend a small seed ontology with the ontology
framework introduced by Liu et al. (2005) (Section 3.1) to investigate how well
the content of these Web sites corresponds to the perception of domain experts.
A detailed analysis of the frequency and sentiment of terms identified reveals
that there are significant differences regarding attention and attitude towards
the respective topics among the Web coverage of actors such as news media
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Figure 6: Tourism ontology (Dickinger et al., 2008).

sites, NGOs and companies. Figure 7 visualizes the domain ontology obtained
from the ontology extension process. Black terms indicate the seed ontology,
gray terms were added in the first iteration of ontology extension, white con-
cepts in the second iteration. The method extracted terms such as “landfill
gas”, “emissions”, “dioxin emissions” which are clearly relevant to the domain.
Companies addressing environmental issues (McDonalds, Monsanto, Pharmacia,
Renessen, Sunoco) got included, as well as environmental programs (Balanced
Lifestile, GRI, Redirectory) and chemical substances (DEHP, RoundupR). The
usefulness of terms such as “borrower”, “issue series” and “assets” is less clear,
but were included since they co-occur quite frequently with some of the seed
terms. Including external evidence sources into the ontology learning process
(Section 2) would reduce the impact of such relations derived from in-corpus
evidence sources.

4.3 Media Watch on Climate Change

The Media Watch on Climate Change Hubmann-Haidvogel et al. (2009) builds
contextualized information spaces by enriching documents with geospatial, se-
mantic and temporal annotations. Ontology learning (relying on the frame-
works presented in this chapter) is used to create lightweight domain ontologies
for structuring the information in the contextualized information space, and to
provide means for navigating the repository (Figure 8).
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Figure 7: Solid waste disposal ontology (Pollach et al., 2009).

As in the previous use cases, the authors only consider taxonomic relations
and a general non-taxonomic related type in the ontologies to prevent them of
getting too complicated for (non-expert) users to read and understand. Geo-
graphic maps, semantic maps and tag clouds complement the ontology view and
provide context information on documents and search queries.

5 Outlook and Conclusions

This chapter presented a blueprint for a generic ontology extension framework,
together with a number of real-world applications. It sheds light on the differ-
ent aspects of such a framework by (i) suggesting data sources which contain
domain knowledge and might act as input for the ontology learning process, (ii)
presenting a set of techniques to assemble the necessary components and achieve
useful results for different application domains, (iii) stressing the balance nec-
essary between in-corpus evidence and evidence from external sources to ensure
a proper focus of the extended ontology, (iv) discussing actual implementations
of these techniques and finally, (v) presenting use cases where these techniques
have already been applied successfully.

The selected use cases demonstrate the importance and broad applicability
of ontology learning. Simple lightweight ontologies help to structure knowledge
and to navigate complex information spaces, and indicate how different actors
perceive a domain. Future research will focus on the identification and inclusion
of new data sources for ontology extension, the improvement of evidence plugins
(e.g., by including more sophisticated information extraction and text mining
algorithms), the optimization of transformation heuristics, the improvement of
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Figure 8: Media Watch on Climate Change (Hubmann-Haidvogel et al., 2009).

the balance between external and in-corpus evidences, and the integration of
user feedback into this process.
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Glossary

Co-occurrence Analysis. Co-occurrence analysis determines whether terms
are significantly over-represented in designated spans of text. The calculation of
statistical significance compares the distribution of terms in a domain-specific
target corpus with their distribution in a generic reference corpus to identify
candidate terms of inclusion in the extended ontology.

Evidence. Evidence represents the input data for the ontology learning pro-
cess. The presented framework relies on evidences from unstructured sources
(domain text), social sources (for example APIs of Web 2.0 applications and
tagging systems) and structured sources (online Semantic Web data and on-
tologies).

Evidence Integration. Integration of evidences from heterogeneous sources
supports the ontology learning process. Combining in-corpus data with social
sources, for example, will include an outside view of the domain into the learned
ontology.

Sentiment. Sentiment is the emotional attitude towards abstract or real
objects of their environment. Measures of individual or organizational bias that
distinguish between positive, negative and neutral media coverage are impor-
tant indicators for investigating trends and differing perceptions of stakeholder
groups.

Spreading Activation. Spreading activation is a graph-based, interative
search technique inspired by cognitive models of the human brain. It is typi-
cally applied to various types of networks (e.g., associative, semantic or neural
networks).

Trigger phrases. Trigger phrases rely on the heuristic that certain phrases
(e.g., “renewable energy, especially solar energy ...”) often indicate hyponym,
hypernym, and meronym relations. Trigger phrase analysis detects these con-
structs by using pattern matching via regular expressions combined with part-
of-speech tags.

Vector Space Model. Vector space models are a common way to represent
documents and queries in information retrieval systems, e.g. for computing sim-
ilarity between documents, or between a query term and a document collection.
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