
Noname manuscript No.
(will be inserted by the editor)

Optimizing Queries to Remote Resources

Albert Weichselbraun

Received: date / Accepted: date

Abstract One key property of the Semantic Web is its support for interoperability. Re-
cent research in this area focuses on the integration of multiple data sources to facilitate
tasks such as ontology learning, user query expansion and context recognition. The growing
popularity of such machups and the rising number of Web APIs supporting links between
heterogeneous data providers asks for intelligent methods to spare remote resources and
minimize delays imposed by queries to external data sources.

This paper suggests a cost and utility model for optimizing such queries by leveraging
optimal stopping theory from business economics: applications are modeled as decision
makers that look for optimal answer sets. Queries to remote resources cause additional cost
but retrieve valuable information which improves the estimation of the answer set’s utility.
Optimal stopping optimizes the trade-off between query cost and answer utility yielding
optimal query strategies for remote resources. These strategies are compared to conventional
approaches in an extensive evaluation based on real world response times taken from seven
popular Web services.

Keywords information integration · adaptive decision-making · optimal stopping ·
opportunity cost model · Semantic Web · heterogeneous data sources

1 Introduction

Semantic Web applications provide, integrate and process data from heterogeneous sources,
including third party services. Combining information from different locations and services
is one of the key benefits of the Semantic Web.

Current approaches usually limit their queries to a number of particularly useful and
popular services, but research on automated Web service discovery and matching (Gupta
et al, 2007) and the Web of Linked Data (Bizer, 2009) focus on enhancing applications to

Albert Weichselbraun
Vienna University of Economics and Business
Augasse 2-6, 1090 Vienna, Austria
Tel: +43-1-31336-5229
Fax: +43-1-31336-787
E-mail: albert.weichselbraun@wu.ac.at

2

locate, interface, and use relevant resources in real time. Such implementations can issue
queries that spawn vast collections of different data sources, providing even more enhanced
information. Obviously, brute-force query strategies do not scale well and impose a consid-
erable load on the affected services, even if only small pieces of information are requested
(Weichselbraun, 2009). In fact, it is also in the application developer’s own interest to reduce
the number of queries to external services, since they add additional processing time.

The points made above demonstrate that applications which heavily depend on external
resources need to ensure that they do not overuse the remote service, and that they need to
carefully decide on whether the additional delay imposed by an external query is worth its
benefit. Large-scale Semantic Web projects such as the IDIOM Media Watch on Climate
Change (Hubmann-Haidvogel et al, 2009; Scharl et al, 2007), which process hundreds of
thousands of pages a week, demonstrate the importance of these guidelines. Querying Geo-
Names to geo-tag all the documents mirrored by IDIOM’s architecture would add days of
processing time.

Therefore, the development of accurate algorithms, which consider high level goals such
as user satisfaction and help to decide which resources to query for a particular document,
plays a crucial role in providing scalable solutions. This paper illustrates the use of optimal
stopping to improve the performance of Semantic Web applications by optimizing queries
to third party resources. The applied search test stop algorithm (MacQueen, 1964) models
applications as decision makers who pay the search cost (cs) to retrieve answer sets and
an indicator (x0) estimating the answer’s expected utility. Based on x0 they might either (i)
reject the answer set and search for a better option (paying cs again), (ii) accept the answer
set and gain the appropriate utility, or (iii) retrieve additional information from external
services (x1) to get a more accurate estimation of the answer’s utility. The proposed method
yields optimal query strategies by optimizing the trade-off between total query cost and the
answer’s utility.

Such approaches gain in importance as more and more Web 2.0 and Semantic Web
applications depend on and integrate external resources. In the present paper I therefore
identify and address a fundamental obstacle to the further growth of the Semantic Web and
its usefulness. Without appropriate methods for optimizing queries to external resources,
clients will only be able to query a small subset of all potential data sources within the time
constraints set by the user, undermining the Semantic Web’s fundamental principle of using
distributed knowledge and resources.

Despite the obvious importance of optimal stopping for the Semantic Web community,
this paper shows the application of a generic approach which might also be applied to related
problems in other fields such as information retrieval (Grass and Zilberstein, 2000; Weich-
selbraun, 2009), autonomous computing (Kephart and Das, 2007; Tesauro et al, 2007), and
Web Search (Ipeirotis et al, 2007; Kukulenz and Ntoulas, 2007).

1.1 Related Literature

Action- or rule-based policies often suffer when applied to complex and distributed systems,
because the number of rules required to address all possible system states grows significantly
with the number of systems interacting with each other. Applying utility models to decision
problems reduces complexity (Zhang et al, 2008), allows a high-level specification of the ex-
pected outcome (Kephart and Das, 2007; Tesauro et al, 2007; Zhang et al, 2008), and enables
the application of methods developed in economic theory and operations research. Utility

3

models are particularly useful for making complex decisions, since they address issues such
as goal conflicts and the problem of considering trade-offs (Kephart and Das, 2007).

The main difficulty of applying these models is predicting the future utility (and costs)
for a given allocation (Vengerov, 2007). Research in the fields of autonomous computing
(Verma et al, 2008) suggests the use of workload reward functions to apply a utility-based
model to disk scheduling. Verma et al (2008) show that this model performs significantly
better than commonly used algorithms. Changing the reward model allows adapting their
model to other objectives. Strunk et al (2008) investigate how the concept of utility can be
applied to the provisioning of storage systems. They combine all relevant system metrics
such as disk capacity, disk latency and availability into a utility score and provide a plug-in
model with specific plug-in utility functions for conversion of these metrics into a utility
value. Yeo and Buyya (2007) introduce a pricing function for cluster resources considering
two components: a static base price for the resource’s usage and a dynamic component
depending on the current utilization of the resource. They evaluate their approach using
user-centric performance metrics, which indicate the cluster’s profitability and the utility
achieved from satisfying job requests. Zhang et al (2008) use an economic model to allocate
multiple system resources to workloads in a database management system. The authors
trade these resources on an electronic market where consumer wealth is determined by the
workload’s importance. Tesauro et al (2007) elaborate on the use of reinforcement learning
for automatic resource allocation. They address the issue of poor initial performance during
online training by applying a fixed policy to the decision process until the newly learned
strategy supersedes the hardwired decision logic.

Ipeirotis et al (2007) and Kukulenz and Ntoulas (2007) apply utility models to search
queries. The resulting query strategies might lead to less accurate results than a brute force
approach but optimize the balance between accuracy and cost.

The research reviewed above successfully applies utility models to optimization prob-
lems in the information sciences. These models are highly relevant especially in regard to
the transformation of model parameters to cost and utility metrics, but they do not present
generic approaches for addressing decision problems under imperfect information. In con-
trast, the work introduced in this paper, focuses on providing practitioners with a generic
framework for applying optimal stopping to decision problems. Optimal stopping has its
roots in economic theory and optimizes decisions based on the utility yielded by these deci-
sions. Freeman (Freeman, 1983) provides a comprehensive overview of the optimal stopping
problem and its extensions. Recent work in this area includes research done on the approxi-
mation of optimal stopping problems (Marcozzi, 2008) and optimal stopping in connection
with multiple attributes (Lim et al, 2006). For an excellent introduction to optimal stopping
and its applications please refer to Ferguson (2009).

Grass and Zilberstein (2000) present a generic model for value-driven information gath-
ering (VDIG), which considers the cost of information in query planning. VDIG focuses on
the query selection problem in terms of the trade-off between response time and the value
of the retrieved information. In contrast, approaches that address only the coverage prob-
lem put their emphasis solely on maximizing precision and recall. The main disadvantage
of their model is the lack of support for a test step which allows the retrieval of additional
information on an option’s value.

4

1.2 Contributions and Paper outline

This paper applies MacQueen’s search test stop (STS) model (Section 2) to query opti-
mization problems (MacQueen, 1964; Weichselbraun, 2009). The work introduces a cost
and utility model for the STS algorithm proposed in Weichselbraun (2009), provides prac-
titioners with the extensions necessary to use STS in real world settings, and performs an
extensive statistical evaluation of the approach.

The main contributions of this paper are (i) developing an opportunity cost-based model
for the STS algorithm which extends its usefulness to utility driven information gathering,
(ii) introducing the concept of slot costs which is a prerequisite for the useful application
of STS to information retrieval tasks, (iii) demonstrating the application of this approach
to generate contextualized information spaces, and (iv) conducting a comprehensive exper-
iment describing how different slot cost, search and test times, utility functions, and pre-
dictors influence the method’s performance to provide practitioners with background on the
algorithms’ behavior.

The results of this paper can be situated within the field of Artificial Intelligence (AI)
research, integrating techniques from decision theory to address problems of agent decision
making (Horvitz et al, 1988).

The article is organized as follows: Section 2 introduces the STS model, a classical
method of optimal stopping, as an approach for coping with the challenges outlined above.
Section 3 presents an abstract model for applying cost and utility metrics to decision pro-
cesses which optimize the use of remote resources, discusses approaches for estimating
model parameters, and presents solutions which perform well with the STS model. Sec-
tion 4 provides a comprehensive evaluation of the STS approach’s performance, presents
comparisons to other decision models, and discusses the influence of model parameters.
The paper closes with an outlook and draws conclusions in Section 5.

2 The Search Test Stop Model

MacQueen (1964) describes the idea of the STS model as follows: a decision maker searches
through a population of possible actions, sequentially discovering sets of actions (SAi), and
paying the search cost (csi) each time a new set of actions (e.g. “accept documenti”) is
revealed.

For each possible action set (SAi) exists a corresponding sequence of triples (x0
i ,x

1
i ,ui)

with a known joint distribution h(x0,x1,u) indicating its value. The decision maker cannot
directly measure the utility (ui) of an action set, but only its indicators x0

i and x1
i .

After each search step that yields an action set (SAi) the decision maker obtains the
variable (x0

i), which provides an estimation of the action set’s utility (ui). Based on this
information, the decision maker may (i) drop the current action set and continue looking
for another set of possible actions (paying search cost csi+1), (iii) accept the current set of
answers (and gain the utility ui), or (iii) test the retrieved set of actions to obtain x1

i - a better
estimation of the action set’s value - by paying the test cost (cti) and based on this extended
information continue with option i, or finish the process with option ii. The challenge is to
combine these three options in a way that maximizes total utility (ui−∑

m
i=1 csi −∑

n
i=1 cti).

Hartmann (1985) defines the following preconditions for the application of the STS
model: (i) a common probability mass function h(x0,x1,u) exists. (ii) The expected value
of u (z = E(U |x0,x1)) exists and is finite. (iii) F(z|x0) is stochastically ordered over x0

(∂

∂x0 F(z|x0)< 0).

5

This paper deals with discrete service response time distributions and, therefore, uses
an adopted STS methodology for handling discrete data, introduced by Hartmann (1985),
as base for its python stslib module. The library has been validated using unit tests which
leverage known data sets and their solutions such as the ones published in Hartmann’s thesis
(Hartmann, 1985).

Figure 1 visualizes the computation and decision process1. We start with a discrete com-
mon probability function h(x0,x1,u). From h we derive (i) the expected utility r = E(u|x0)
and the probability functions f (r) and F(r), (ii) the expected utility z = E(u|x0,x1) and
based on r the probability functions f (z|r) and F(z|r). Using these values the STS algo-

Fig. 1 The search test stop decision process.

rithm determines the discrete utilities for accepting the action set (r; Equation 1), dropping
the action set and continuing the search (u∗; Equation 2), and testing the current action set
(t; Equation 3) and proposes the action with the highest expected utility value.

r = E(u|x0) (1)

u∗ = u∗F(r = u∗)+ ∑
r>u∗

r f (r)− cs (2)

t = T (r,u∗) = u∗F(z = u∗|r)+ ∑
z>u∗

z f (z|r)− ct (3)

MacQueen (1964) shows that this policy maximizes the decision maker’s utility for the
given problem class.

The right side of Figure 1 illustrates the decision making process. A portal side decides
on the documents to include in their index based on the number of references to concepts
relevant to the portal. Therefore, a pattern search algorithm extracts candidate references

1 The tables in the figures are based on an example h function introduced by Hartmann (1985).

6

from the document which provide the indicator x0. Based on this indicator the STS algorithm
decides whether to accept, test or drop the document. If testing is necessary it retrieves
additional information from a Web service to gain the indicator (x1) and decides based on
this additional information whether to accept or drop the document.

3 Method

Application of the STS model to Web services requires the availability of accurate cost and
utility functions to transform application-specific parameters into comparable cost and util-
ity scores. Figure 2 introduces an abstract model inspired by the method applied by Strunk
et al (2008) to provisioning storage systems to address this issue. A domain model covers

Fig. 2 Abstract model for assessing cost and utility metrics.

all relevant properties of the application and yields cost and utility metrics. Metric-specific
functions that take into account the user’s preferences translate these values into utility and
price scores. New metrics are addressed by adding the appropriate translation functions to
the model. The STS model processes tasks based on the given cost and utility, and considers
feedback by adjusting the user’s preference values or by modifying the translation function.

3.1 Pricing Resources

In the traditional STS model, costs refer to investment in terms of time and money spent on
information gathering. When applying this idea to distributed applications, costs comprise
all expenses such as CPU time, bandwidth and network resources that are necessary to
search for or test certain answers.

Depending on the use case and the involved third-party services, different sets of domain
specific metrics are relevant to pricing the required resources. The system architect identi-
fies these metrics based on the domain model and specifies functions for their translation
into utility scores. New metrics are included by adding new translation rules to the architec-
ture. Common approaches toward pricing resources are the use of real-world business costs
(Strunk et al, 2008), modeling search costs as exponential functions (Montgomery et al,
2004), and linear functions for cognitive costs (Shugan, 1980).

7

Yeo and Buyya (2007) define four essential requirements for pricing functions of clus-
ter resources: the function should be (i) easy to configure by the owner of the resource, (ii)
reflect the real resource usage, (iii) able to adjust a resource price according to its usage,
and (iv) adapt to changes in supply and demand. Based on these criteria, Yeo and Buyya
(2007) introduce a heuristic for pricing resources in which a resource’s price consists of two
components (Equation 4): a static base price for the resource’s usage and a dynamic compo-
nent (Equation 5) depending on the current utilization of the resource. This pricing model
ensures that the framework reacts to spare resources by increasing the prices accordingly.
The application and resource-specific factors α j and β j weight the impact of the base price
and the price’s dynamic component.

Pj = α jPBase, j +β jPUtilization, j (4)

PUtilization, j =
(Resused, j

Resmax, j−Resused, j

)
·PBase, j (5)

This pricing strategy ensures that the system never runs out of a resources because the
algorithm computes prohibitively high prices for spare resources. STS models guarded by
this pricing strategy therefore never use all available resources, only the fraction affordable
at reasonable prices, and consequently yield inferior results.

STS is best suited for situations where the test cost ct is in the same order as the ac-
tion set’s utility: O(ct) = O(u(SA)). In settings with O(ct)� O(u(SA)), the test costs have
no significant impact on the utility. If O(ct)� O(u(SA)), no testing will take place at all
because the involved costs exceed any possible benefit of testing (Weichselbraun, 2009).

Based on these insights, we introduce an opportunity cost model that expresses search
and test costs in terms of the average utility generated by using a unit of the resource
Resused, j, as outlined in Equation 6.

Pj =
u j

Resused, j
(6)

u j indicates the average utility generated by using the amount Resused, j of resource j.
Applying this model to query times yields Equation 7 for computing the per-request query
cost cr:

cr = Pr =
ur

tr
(7)

The common utility distribution function h(x0,x1,u) yields the expected utility per re-
quest ur. From historical data, such as the one presented in Table 1, we derive tr. Another
important issue to consider is that costs are not always known in advance. Web service
query times, for instance, are influenced by many factors, which makes it very hard to pre-
dict this data. A forecaster service, therefore, provides estimates for future costs based on a
weighted average of historical data points over a sliding window. More advanced versions
of this service may apply time series analysis and domain-specific knowledge to yield better
approximations.

8

Service Protocol response time
average median minimum maximum variance

(tr) (t̃r) (tmin
r) (tmax

r) (σ2
tr)

Amazon REST 0.5 0.2 0.2 31.3 0.6
DBpedia SPARQL 0.8 0.5 0.1 60.0 4.2
Del.icio.us REST 0.6 0.4 0.1 24.3 0.5
GeoNames REST 0.7 0.1 0.0 60.0 19.9
Google Web 0.3 0.2 0.1 10.3 0.2
Swoogle Web 4.1 1.6 0.2 60.0 98.4
Wikipedia Web 0.5 0.2 0.1 60.0 1.3

Table 1 Response times of popular Web services in seconds (Weichselbraun, 2009).

3.2 Utility Function

Applying the STS model to economic problems yields cash deposits and payments. Trans-
ferring this idea to information science is a bit more subtle, because the utility is highly
dependent on the application and its user’s preferences. Even within one domain, the notion
of an answer set’s (SA) value might not be clear. For instance, in a geo-spatial context the
“correct” answer for a certain problem might be a particular mountain in Austria, but the
geo-tagger might instead identify the surrounding region or at least the state in which it is
located. Assigning concrete utility values to these alternatives is not always possible without
detailed information regarding the application and user preferences. Approaches for evaluat-
ing the set’s value might therefore vary from binary methods (full score for correct answers;
no points for incomplete or incorrect answers) to complex ontology-based approaches that
compute utility based on the grade of correctness and severity of deviations.

In general, a utility function that assumes linearly independent utility values might look
like Equation 8.

u = u(SA) = ∑
ai∈SA

λ(ai) feval(ai) (8)

The utility equals the sum of the utility gained by each answer ai of the answer set SA, which
is evaluated using an evaluation function feval , and weighted with a factor λ(ai). To simplify
the computation of the utility, we consider only correct answers as useful (feval(ai) = 1 if
ai is correct and 0 otherwise) and apply the same weight (λ(ai) = const = 1) to all answers
(Vengerov, 2007).

The experiments performed on data provided by the IDIOM Media Watch on Climate
Change (Section 4) will use a linear utility function, which increases with the number of
geographic references (|ageo|) and topics (|atopic|) identified in a document. The application
focuses on high precision rather than high recall, which led to the following quality criteria:
every document included should be relevant to the domain (climate change), and contain
at least one geographic reference for geo-spatial queries. Documents with a total of more
than four annotations are more desirable than documents with a smaller number of annota-
tions. Equation 9, which is used as a utility function for the evaluation presented in the next
chapter, reflects these requirements.

u = λ · (|atopic|+ |ageo|) with (9)

λ =

1 i f |atopic|> 1 and |ageo|> 1 and |atopic|+ |ageo|> 4
0.5 i f |atopic|> 1 and |ageo|> 1 and |atopic|+ |ageo| ≤ 4
0 otherwise.

(10)

9

Section 4 also includes experiments with other utility functions to assess their impact on the
decision logic’s performance.

3.3 Common utility mass function

The STS approach assumes that the decision maker does not benefit from accepting every
possible action. As in the real world, where every potential employee could yield a posi-
tive utility to the company, every potential answer will contribute to the total utility of the
answer set. Developing an optimal decision strategy, therefore, needs to consider the lim-
ited number of available positions and the costs created by accepting an answer, because
otherwise an accept-everything approach would be the most successful one. In an informa-
tion retrieval context every answer improves recall at the cost of precision, increasing the
effort required to search for a particular document within the answer set. Considering that
the answer with the highest recall would be the whole Web, the requirement to impose a
penalty for every document in the corpus becomes evident. This idea is also supported by
findings from Johnson and Payne (1985), which show that decision makers are prepared to
trade recall for less effort required to check additional results. Therefore, we introduce the
slot costs csl denoting the cost required for checking additional results. Subtracting this cost
from the utility derived from Equation 9, ensures that only answers with a utility higher than
the slot costs produce positive results. The evaluation section will analyze how slot costs
corresponding to the top 30%, 50%, 70%, 90%, and 95% of the documents influence the
method’s performance.

A tagger usually identifies entities by scanning documents for string sequences contain-
ing gazetteer and topic entries. The number of identified entries (|Sa| = x0) provides a first
estimation of the value of the answer’s utility. Applying entity identification techniques, ad-
vanced disambiguation, and leveraging external resources yields a refined indicator (x1) of
the entity set’s utility. This assessment might still be flawed as the answer’s true utility is
only revealed after its acceptance. Based on the probability of a particular answer ai ∈ Sa,
yielding a certain utility u given the indicators x0 and x1, the joint probability h of a tuple x0,
x1, u is determined.

If the statistical properties of the components computing x0 and x1 are unknown, classi-
fication accuracies found in the literature (Wang et al, 2008) or heuristics are helpful means
to estimate h. In such environments the incorporation of user feedback and machine learning
techniques helps refining h and therefore yields more accurate query strategies. If the joint
probability function and the cost estimates are accurate, STS will return an optimal query
strategy (MacQueen, 1964).

4 Evaluation

From the practitioners point of view there is a number of interesting questions regarding the
application of STS: (i) will applications using STS perform better than simple brute-force
approaches (always test; AT), or applications just ignoring the additional information avail-
able (search only; SO); (ii) will STS outperform the other methods regardless of the involved
search and test cost; (iii) what’s the influence of the request time predictions; and finally (iv)
how does the chosen utility function change the algorithm’s performance? The simulations
below will address these questions and demonstrate how STS excels other decision logics
in most real world settings.

10

The simulations use two weekly snapshots from the IDIOM Media Watch on Climate
Change (Hubmann-Haidvogel et al, 2009; Scharl et al, 2007) database comprising approx-
imately one million documents. The IDIOM Media Watch on Climate Change’s media
corpus draws upon a list of 156 news media sites from five English-speaking countries
(Liu et al, 2005). The evaluation task comprises the creation of a contextualized informa-
tion space (Hubmann-Haidvogel et al, 2009) for visualization in the climate change portal
(www.ecoresearch.net/climate). Users can search and navigate documents within this repos-
itory along multiple dimensions and access context information through information land-
scapes, geographic maps, domain ontologies, and tag clouds (Hubmann-Haidvogel et al,
2009). Processing documents for the contextualized information space is costly and, there-
fore, only a subset of all available documents shall be selected within a given time limit of
14,400 seconds (4 hours).

Figure 3 outlines the evaluation setting. A Web crawler mirrors one million potential
candidate documents for inclusion into the contextualized information space.

Crawler

Web 2.0 data sources
(Amazon, Del.icio.us,
GeoNames, Wikipedia)

search engines
(Google, Swoogle)

SPARQL Endpoints
(DBpedia)

domain model

historical service
request t imes

(predictors)

Web pages
(156 Media Sites)

documents to include
in the contextualized

information space

document
repository

user preferences
and cost functions

AT

SO

STS

String Pattern
Search ()

Query Web
Service ()

Decision Logic

x 0

x 1

Util ity Function

Utility Score

Fig. 3 Evaluation setting.

Three different decision logics (AT, SO and STS) decide on the subset of documents to
include into the contextualized information space. The SO decision strategy makes decisions
based on the first indicator of the document’s utility (x0), which is computed by applying a
string pattern search. AT always requests the second indicator (x1) prior to its decision. The
test cost for x1 depends on the used Web service (see Table 1). STS leverages the abstract
cost model (Figure 1) introduced in Section 3 to combine: (i) user preferences and cost
functions, (ii) the domain model, and (iii) historical service request time statistics to decide
on whether to resort to testing or not. Applying a utility function (Equation 9) to the number
of unique geographic and topic references in the document yields the document’s utility. The
evaluation summarizes the utility of all action sets (documents) collected by the decision
logics and uses this metric to describe the decision logic’s performance.

Applying the Kolmogorov-Smirnov test to this data shows that the results are not nor-
mally distributed. Therefore, the evaluation uses the Wilcoxon signed-rank test to determine
whether differences between the utility values are statistically significant or not.

11

Two tables summarize the evaluation results: (i) Table 2, presenting the influence of
different slot cost (Section 4.1) and search time levels (Section 4.2) on the decision logic’s
performance; and (ii) Table 3, which shows the impact of different utility functions (Sec-
tion 4.3) and request time predictors (Section 4.4). The letter ‘d’ indicates the utility func-
tion introduced in Equation 9, ‘l’ a strictly linear utility function (u = |atopic|+ |ageo|),
‘s’ a squared utility function (u = (|atopic|+ |ageo|)2), and ‘r’ the use of the square root
(u =

√
|atopic|+ |ageo|).

The table’s cells contain the sum of the utility of all action sets garnered by the particular
decision logic. Grey cells indicate that the decision logic performed statistically significantly
worse than STS with the given simulation parameters.

Figure 4 visualizes how the decision logics perform over time. The top graphs show the
total utility of all action sets collected, the graph below the number of action sets gathered.
The simulation on the left side uses the data set with the lowest test time average and vari-
ance (Google), the simulation on the right side draws on the Swoogle data set (highest test
time average and variance).

Fig. 4 Utility and number of collected action sets.

SO accepts only action sets with E(u|x0)> 0 and therefore ignores sets where x1 would
be required to ensure a positive utility. In contrast, AT always determines x1, which leads to a
lower performance due to time lost for unnecessary testing. In settings with high and volatile
test cost (right graphs) testing becomes much more expensive so that STS uses testing more
cautiously. Due to the high test cost, the SO strategy performs comparably better. Wrong
request time predictions (see Section 4.4) might lead to situations where STS performs even
worse than AT or SO (see top right graph; time window approximately from minute 30 to
70).

12

AT SO STS
1/4·cs 1·cs 4·cs 1/4·cs 1·cs 4·cs 1/4·cs 1·cs 4·cs

Amazon 0 49963 27558 10396 201464 50891 12311 201472 50890 12310
(tr = 0.5, 30 50224 29093 11357 204203 51389 13243 204203 51479 13315
σtr = 0.6) 50 38320 21606 8905 149964 38903 10513 149963 38899 10512

70 32132 18396 7379 116006 29634 7706 116004 29662 7899
90 14091 8326 3178 19462 5105 1322 25707 10151 3498
95 9766 5656 1837 20304 4387 755 22233 7784 1936

DBpedia 0 35764 22588 9754 201461 50892 12308 201472 50890 12310
(tr = 0.8, 30 37289 24198 10071 204201 51474 13302 204203 51479 13315
σtr = 4.2) 50 28129 18340 8364 149973 38890 10501 149963 38899 10512

70 23657 15133 6950 116006 29652 7688 116004 29662 7721
90 10249 7239 3037 19462 5105 1325 20695 8932 3244
95 7617 4818 1703 20304 4387 755 21283 7162 1847

Del.icio.us 0 43865 25976 10280 201473 50893 12301 201472 50890 12310
(tr = 0.6, 30 44958 27245 11060 204203 51459 13237 204203 51479 13315
σtr = 0.5) 50 33633 20297 8834 149963 38916 10511 149963 38899 10512

70 28773 16956 7295 116011 29655 7706 116004 29662 7868
90 12461 8013 3153 19462 5096 1324 23867 9743 3425
95 9067 5371 1748 20304 4387 755 22137 7640 1925

GeoNames 0 38088 24213 9995 201472 50770 12308 201472 50890 12310
(tr = 0.7, 30 39528 25700 10514 204202 51473 13307 204203 51479 13315
σtr = 19.9) 50 29806 19258 8599 149954 38897 10511 149963 38899 10512

70 24929 15973 7150 116010 29768 7695 116004 29662 7782
90 10857 7553 3060 19462 5105 1322 20962 9071 3266
95 8212 5130 1713 20304 4387 755 21681 7010 1867

Google 0 73687 34531 11043 201470 50893 12330 201472 50890 12310
(tr = 0.3, 30 73817 36033 12022 204197 51485 13316 204203 51479 13315
σtr = 0.2) 50 57041 27385 9422 149971 38915 10511 149963 38899 10424

70 46961 23138 7765 116011 29754 7705 116004 29651 8106
90 21459 10040 3498 19462 5105 1324 32086 11301 3710
95 16012 7236 1936 20304 4387 755 25309 8369 2022

Swoogle 0 8234 7173 4788 201457 50898 12340 201472 50890 12310
(tr = 4.1, 30 8279 7183 4660 204203 51483 13310 204203 51479 13315
σtr = 98.4) 50 7342 6100 3800 149963 38917 10513 149963 38899 10512

70 6065 5394 3605 116006 29781 7716 116004 29662 7690
90 2753 2283 1242 19462 5109 1324 19462 5105 2428
95 1467 1358 897 20304 4387 755 20304 4984 1311

Wikipedia 0 55685 29937 10606 201461 50894 12319 201472 50890 12310
(tr = 0.5, 30 56574 31514 11574 204202 51469 13315 204203 51479 13315
σtr = 1.3) 50 43105 23209 9039 149972 38903 10514 149963 38899 10512

70 35989 19719 7506 116007 29732 7703 116004 29662 7991
90 16184 9111 3244 19462 5105 1328 27750 10538 3500
95 11404 6226 1845 20304 4387 755 22820 7838 1944

Table 2 Query utility for different Web services, slot cost (0, 30, 50, 70, 90, 95), and search time levels (1/4,
1, 4).

4.1 Slot Cost

This evaluation verifies the hypothesis that STS performs document evaluation tasks equally
well or better than the other decision logics introduced, regardless of the fraction of action
sets yielding a positive utility.

Table 2 summarizes the evaluation results for all seven Web services using five different
slot cost levels (csl), which are specified as the percentage of action sets yielding a negative
utility at the given level (see Section 3.1).

The results of the evaluation emphasize the importance of the slot cost for obtaining
meaningful results. Low slot costs lead to situations where STS and the SO decision logic
deliver the same performance (Table 2; white cells in the SO column). This result was to be
expected, considering that in such cases most (for csl = 0 all) choices yield a positive utility
so that there is no point in testing action sets. Consequently, the AT decision logic performs
badly in such situations.

13

AT SO STS STS
5 5 5 1 10 50 100 1000 c

Amazon d 8326 5105 10134 9608 10286 10299 10009 10067 10151
(tr = 0.5, l 8156 4526 10701 9935 10802 10886 10740 10700 10568
σtr = 0.6) s 8017 5290 10776 10113 10954 11077 10769 10696 10762

r 7893 5342 10150 9775 10262 10286 10241 10122 10075
DBpedia d 7239 5105 9199 8936 9224 9267 9199 9200 8932
(tr = 0.8, l 6792 4526 9683 9321 9601 9482 9415 9295 9132
σtr = 4.2) s 6431 5290 9598 9306 9568 9497 9411 9292 9571

r 6398 5342 9341 9265 9383 9471 9324 9301 9219
Del.icio.us d 8013 5105 9708 9641 9801 9820 9829 9717 9743
(tr = 0.6, l 7757 4526 10218 10096 10287 10183 10234 10097 10239
σtr = 0.5) s 7565 5290 10460 10252 10558 10245 10326 10091 10097

r 7261 5342 9758 9667 9756 9814 9785 9721 9668
GeoNames d 7553 5105 10189 10076 9835 9474 9350 9044 9071
(tr = 0.7, l 7150 4526 10855 10851 10663 9759 9604 9409 9442
σtr = 19.9) s 6870 5290 10775 10698 10549 9853 9401 9630 9603

r 6952 5342 10493 10326 10074 9673 9320 9361 9332
Google d 10040 5105 11292 11205 11293 11254 11321 11130 11301
(tr = 0.3, l 10038 4526 11919 11663 11891 11879 11881 11895 11901
σtr = 0.2) s 9926 5290 12434 12196 12447 12427 12414 12398 12407

r 9508 5342 11463 11166 11463 11412 11462 11355 11346
Swoogle d 2283 5105 6082 5925 6091 6136 6068 5415 5105
(tr = 4.1, l 1402 4526 6515 6466 6689 6525 6366 5271 4526
σtr = 98.4) s 1779 5290 7260 6250 7321 7088 6946 6305 5290

r 1623 5342 6281 5795 6214 6039 6297 5471 5342
Wikipedia d 9111 5105 10500 10055 10484 10470 10357 10476 10538
(tr = 0.5, l 8662 4526 11039 10461 10999 11034 11088 11092 11155
σtr = 1.3) s 8566 5290 11206 10737 11252 11179 11174 11232 11245

r 8494 5342 10509 10227 10421 10529 10533 10463 10431

Table 3 Comparing the per decision logic query utility for different utility functions (d, l, s, r) and predictors
(moving average of 5, 1, 10, 50, 100, 1000 and constant (c) based on the average request times).

As the cost of making suboptimal decisions rises (due to higher slot cost), the STS algo-
rithm performs significantly better than the other decision logics (Table 2; grey cells). The
AT strategy outperforms the SO decision logic as testing becomes more and more benefi-
cial. In conclusion, SO performs quite well in environments with low slot cost, while STS
delivers optimal results in all tested settings.

4.2 Search and Test Times

The evaluation tasks carried out verify the hypothesis that STS performs equally or better
than the other decision logics, regardless of the search and test time levels. Table 2 demon-
strates how different search and test times influence the algorithms performance. In the
table’s heading, search time multipliers of a quarter, one, and four indicate the search time
level, on the table’s left side the Web services used are listed with the respective slot costs
and average test times (see also Table 1).

All three decision logics yield higher utility for lower search times, because low search
times allow them to obtain more answer sets in the same time period. AT and STS benefit
from lower test times as well, as they make testing less expensive.

Lower search times (1/4) lead to more simulations where SO and STS perform equally
well (Table 2; white cells in the SO column), because testing becomes less favorable as the
test-cost to search-cost ratio rises. A simulation run with search costs of a quarter based
on the Swoogle dataset means that testing is approximately 24 times more expensive than
searching. Therefore STS never resorted to testing in this setting, which led to a behavior
(and utility score) similar to SO.

14

4.3 Utility function

Table 3 compares results that where obtained using four different utility functions. Despite
the fact that the absolute utility values differ statistically significantly, all utility functions
yielded the same overall results: STS outperforms the AT decision logic in all experiments
and yields the same or a higher utility in comparison with the SO decision logic. This result
is also suggested in the literature, which reports the successful application of various ap-
proaches for determining a decision’s utility such as electronic markets (Zhang et al, 2008),
marginal utility models (Vengerov, 2007), and linear utility models (Das et al, 2006).

4.4 Predictors

Predicting request times accurately is important because otherwise decisions are based on
wrong assumptions. The following evaluation is carried out to investigate the impact of
the predictor choice (predictions based on a moving average of 1, 5, 10, 50, 100, 1000
and constant predictions based on the mean of the request time) on the STS algorithm’s
performance2 for the presented use case (see Table 3).

A statistical analysis of Table 3 yields the following insights: results obtained from
highly volatile Web services (σtr ≥ 10 · tr: GeoNames, Swoogle) and Web services with
a moderate volatility (σtr < 10 · tr: Amazon, DBpedia, Del.icio.us, Google, Wikipedia) dif-
fer considerably. For GeoNames and Swoogle, the performance differences due to different
predictors are in 300 of 336 cases (89%) statistically significant according to the Wilcoxon
signed-rank test with a maximum average performance difference of approximately 12.3%.
In contrast, the predictor choice only leads to a performance difference of 2.8% for Web
services with moderate volatility and only 354 of 840 computations (42%) show significant
deviations. The results also indicate that the moving average of the last ten results performed
best for the given use case. In highly volatile environments, very large moving averages and
constant request time estimates perform badly, because they are too coarse to accurately
estimate the real cost involved in the decision.

Despite the relatively small deviations in this use case, the predictor’s influence on the
simulation cannot be underestimated, because inaccurate predictions lead to decisions based
on wrong input data. The visualization of the simulation using the Swoogle dataset (Fig-
ure 4) demonstrates the impact of such a wrong decision: the AT decision logic outperforms
STS over a timespan of approximately 40 minutes (from minute 30 to 70) during the 240
min simulation run. In contrast, STS performs very well over the whole simulation period
when applied to the Google dataset, where request time predictions are much more accurate
due to the smaller variance of search times.

4.5 Final Remarks

Table 4 contrasts the number of Web service calls, the Web service query time and the num-
ber of accepted documents for the document selection task from a corpus of 850 documents.
In these simulations the AT and SO decision logic always accept the same number of doc-
uments, because their decision strategy is independent from the Web service’s query cost.

2 SO and AT do not consider costs.

15

Service DL Web service Web service Documents
queries query time accepted

no. % (sec) % no. %
Amazon AT 850 100 611 100 80 100

STS 381 45 219 36 70 88
SO 0 0 0 0 18 22

DBpedia AT 850 100 498 100 80 100
STS 338 40 179 36 72 90
SO 0 0 0 0 18 22

Del.icio.us AT 850 100 468 100 80 100
STS 352 41 181 39 69 86
SO 0 0 0 0 18 22

GeoNames AT 850 100 552 100 80 100
STS 462 54 225 41 76 95
SO 0 0 0 0 18 22

Google AT 850 100 241 100 80 100
STS 452 53 125 52 75 94
SO 0 0 0 0 18 22

Swoogle AT 850 100 1972 100 80 100
STS 90 11 161 8 25 31
SO 0 0 0 0 18 22

Wikipedia AT 850 100 291 100 80 100
STS 446 52 152 52 76 95
SO 0 0 0 0 18 22

Table 4 Web service queries, query time and number of documents accepted.

AT yields the highest recall (100%) at the cost of long query times. SO does not query ex-
ternal resources but yields the lowest recall. Table 4 identifies the following major benefits
of applying STS to queries:

1. handling of trade-offs: the simulations using STS retrieve around 90% of the documents
identified by the AT algorithm at only 36-52% of AT’s query time. Swoogle is the only
notable exception due to its prohibitively high query cost (O(ct)� O(u(SA))) which
yields in less queries and therefore a much lower document recall. The user’s preferences
control how STS handles the trade-off between recall and query time.

2. intelligent querying: the percentage of Web service queries is always higher or at least
equal to the percentage of the query time because STS only queries remote resources if
the expected gain outweighs the costs in terms of additional response time. Therefore,
queries are more likely to occur during periods of short request times and the algorithm
avoids querying busy services.

The results from the simulations performed in this section suggest that STS adjusts well
to Web services with reasonable query cost (O(ct) = O(u(SA))) and provides significantly
shorter query times at moderately lower recall.

5 Outlook and Conclusions

This paper presents an approach for optimizing access to remote resources. Optimizing the
client’s resource access strategy yields higher query performance and saves remote resources
by preventing unnecessary queries.

STS performed equally well or better than the other decision logics (Section 4). It maxi-
mizes answer quality and quantity based on the current search and test cost adjusting queries

16

to the responsiveness of the service and the user’s preferences. These preferences formalize
the trade-off between quality and quantity by specifying a transformation function between
search cost and search times. STS therefore optimizes the agent’s behavior in terms of user
utility. This does not necessarily mean that STS minimizes resource usage. Instead, it dy-
namically adjusts the resource utilization based on the cost of searching (cs) and testing (ct),
providing the user with optimal results in terms of accuracy and response times. Applying
this approach to the IDIOM Media Watch on Climate Change yielded a far better perfor-
mance than the previously used brute-force (AT) approach. Due to the intelligent testing
performed by STS, statistically significantly more documents where processed than with
the AT approach, yielding a higher total utility than the other decision logics. The overhead
from applying the python-based libsts prototype is currently about one second per 23 deci-
sions on a 3 GHz Intel Pentium D CPU. Moving time-critical computations such as matrix
operations to an external C library will considerably improve the library’s throughput.

The presented approach also addresses the need for a generic method with support for
an own testing step to optimize access to remote resources, as outlined in the literature
section. To practitioners this paper provides important information such as usable utility
functions and a cost model for implementing STS, and identifies common pitfalls (e.g., low
slot costs, high test-cost to search-cost ratios). Finally, based on the evaluation performed
in Section 4 it identifies the following four major factors influencing the performance of
STS implementations: (i) The percentage of entries yielding a negative utility: if all choices
do yield a positive utility, an accept-everything strategy would be the optimal choice and
there would be no point in applying a decision logic for selecting answers. Therefore, this
paper introduced the notion of slot costs (Section 3.1) and Section 4.1 elaborated on their
influence on the algorithm’s performance. (ii) The test-cost to search-cost ratio: Section 4.2
describes how high test cost to search cost ratios make testing more expensive and therefore
decrease STS’s effectiveness when compared to SO. (iii) The order of the test cost compared
to the order of the utility of an action set: as already outlined by Weichselbraun (2009), STS
performs best if costs and utility are in the same order (O(c) = O(u(SA))). Section 3.1,
therefore, suggested the use of opportunity costs (Equation 6) for pricing resources, which
ensures that resource costs and answer set utility are of the same order. (iv) The request time
predictions, which have been covered in Section 4.4.

Hartmann (1985) has shown that extending STS to n-levels of testing is a straight for-
ward task. Nevertheless, determining the optimal sequence of tests is still an interesting
research avenue. Future versions of the algorithm will also optimize the number and order
of external services they query.

Developing utility functions considering partially correct answers based on the user’s
preferences will allow more fine-grained control over the process’s performance yielding
highly accurate querying strategies and therefore better results. We will also transfer these
techniques and results to more complex use cases integrating multiple data sources such as
semi-automatic ontology extension (Liu et al, 2005). Extensions considering planning and
high-latency resources such as user feedback garnered from online games (Siorpaes and
Hepp, 2008) provide another area of interesting research challenges.

Acknowledgment

The project results have been developed in the RAVEN (Relation Analysis and Visualiza-
tion) project funded by the Austrian Ministry of Transport, Innovation and Technology and

17

the Austrian Research Promotion Agency. The author would like to thank Wolfgang Janko
for his valuable suggestions during the preparation of this article.

References

Bizer C (2009) The emerging web of linked data. IEEE Intelligent Systems 24(5):87–92,
DOI 10.1109/MIS.2009.102

Das R, Whalley I, Kephart JO (2006) Utility-based collaboration among autonomous agents
for resource allocation in data centers. In: AAMAS ’06: Proceedings of the fifth interna-
tional joint conference on autonomous agents and multiagent systems, ACM, New York,
NY, USA, pp 1572–1579, DOI 10.1145/1160633.1160935

Ferguson TS (2009) Optimal Stopping and Applications. Mathematics Department, Univer-
sity of California, URL http://www.math.ucla.edu/˜tom/Stopping/Contents.html, online
publication, last visited: 2 June 2010

Freeman PR (1983) The secretary problem and its extensions: A review. International Sta-
tistical Review 51(2):189–206

Grass J, Zilberstein S (2000) A value-driven system for autonomous information gathering.
Journal of Intelligent Information Systems 14(1):5–27, DOI 10.1023/A:1008718418982

Gupta C, Bhowmik R, Head MR, Govindaraju M, Meng W (2007) Improving performance
of web services query matchmaking with automated knowledge acquisition. In: Web In-
telligence, IEEE Computer Society, pp 559–563

Hartmann J (1985) Wirtschaftliche Alternativensuche mit Informationsbeschaffung unter
Unsicherheit. PhD thesis, Universität Fridericiana Karlsruhe

Horvitz EJ, Breese JS, Henrion M (1988) Decision theory in expert systems and arti-
ficial intelligence. International Journal of Approximate Reasoning 2:247–302, DOI
10.1016/0888-613X(88)90120-X

Hubmann-Haidvogel A, Scharl A, Weichselbraun A (2009) Multiple coordinated views for
searching and navigating web content repositories. Information Sciences 179(12):1813–
1821, DOI 10.1016/j.ins.2009.01.030

Ipeirotis PG, Agichtein E, Jain P, Gravano L (2007) Towards a query optimizer
for text-centric tasks. ACM Transactions on Database Systems 32(4):21, DOI
10.1145/1292609.1292611

Johnson EJ, Payne JW (1985) Effort and accuracy in choice. Management Science
31(4):395–414, DOI 10.1287/mnsc.31.4.395

Kephart JO, Das R (2007) Achieving self-management via utility functions. IEEE Internet
Computing 11(1):40–48, DOI 10.1109/MIC.2007.2

Kukulenz D, Ntoulas A (2007) Answering bounded continuous search queries in the world
wide web. In: WWW ’07: Proceedings of the 16th international conference on World
Wide Web, ACM, New York, NY, USA, pp 551–560, DOI 10.1145/1242572.1242647

Lim C, Bearden JN, Smith JC (2006) Sequential search with multiattribute options. Decision
Analysis 3(1):3–15, DOI 10.1287/deca.1050.0044

Liu W, Weichselbraun A, Scharl A, Chang E (2005) Semi-automatic ontology extension
using spreading activation. Journal of Universal Knowledge Management 0(1):50–58,
URL http://www.jukm.org/jukm 0 1/semi automatic ontology extension

MacQueen J (1964) Optimal policies for a class of search and evaluation problems. Man-
agement Science 10(4):746–759

18

Marcozzi MD (2008) On the approximation of infinite dimensional optimal stopping
problems with application to mathematical finance. Journal of Scientific Computing
34(3):287–307, DOI 10.1007/s10915-007-9168-2

Montgomery AL, Hosanagar K, Krishnan R, Clay KB (2004) Designing a better shopbot.
Management Science 50(2):189–206, DOI 10.1287/mnsc.1030.0151

Scharl A, Weichselbraun A, Liu W (2007) Tracking and modelling information diffusion
across interactive online media. International Journal of Metadata, Semantics and On-
tologies 2(2):136–145, DOI 10.1504/IJMSO.2007.016807

Shugan SM (1980) The cost of thinking. The Journal of Consumer Research 7(2):99–111
Siorpaes K, Hepp M (2008) Games with a purpose for the semantic web. IEEE Intelligent

Systems & their Applications 23:50–60, DOI 10.1109/MIS.2008.45
Strunk JD, Thereska E, Faloutsos C, Ganger GR (2008) Using utility to provision storage

systems. In: FAST’08: Proceedings of the 6th USENIX Conference on File and Storage
Technologies, USENIX Association, Berkeley, CA, USA, pp 1–16

Tesauro G, Jong NK, Das R, Bennani MN (2007) On the use of hybrid reinforcement
learning for autonomic resource allocation. Cluster Computing 10(3):287–299, DOI
10.1007/s10586-007-0035-6

Vengerov D (2007) A reinforcement learning approach to dynamic resource allo-
cation. Engineering Applications of Artificial Intelligence 20(3):383–390, DOI
10.1016/j.engappai.2006.06.019

Verma A, Jain R, Ghosal S (2008) A utility-based unified disk scheduling framework
for shared mixed-media services. ACM Transactions on Storage 3(4):1–30, DOI
10.1145/1326542.1326546

Wang YJ, Sanderson R, Coenen F, Leng P (2008) Document-base extraction for single-label
text classification. In: Proceedings of the 10th International Conference on Data Ware-
housing and Knowledge Discovery (DaWaK-2008), Springer-Verlag, Berlin, Heidelberg,
pp 357–367, DOI 10.1007/978-3-540-85836-2 34

Weichselbraun A (2009) Applying optimal stopping for optimizing queries to external se-
mantic web resources. In: Cordeiro J, Shishkov B, Ranchordas A, Helfert M (eds) Soft-
ware and Data Technologies, Communications in Computer and Information Science,
vol 47, Springer, Berlin-Heidelberg, pp 105–118, DOI 10.1007/978-3-642-05201-9

Yeo CS, Buyya R (2007) Pricing for utility-driven resource management and allocation in
clusters. International Journal of High Performance Computing Applications 21(4):405–
418, DOI 10.1177/1094342007083776

Zhang M, Martin P, Powley W, Bird P (2008) Using economic models to allocate resources
in database management systems. In: CASCON ’08: Proceedings of the 2008 conference
of the center for advanced studies on collaborative research, ACM, New York, NY, USA,
pp 248–259, DOI 10.1145/1463788.1463814

